NI™ (Non-Interfering™) Protein Assay (205 Citations)








Protocols.io provides an interactive version of this protocol where you can discover and share optimizations with the research community.
A highly sensitive, colorimetric protein assay that overcomes interference of common laboratory agents present in protein solutions and shows minimal protein-to-protein variation. The assay is unaffected by the presence of common laboratory agents, such as reducing agents, chelating agents, detergents, amines, sugars, chaotropes, salts, drugs, antibiotics, cobalt and other common laboratory agents (see tables 1 and 2).
The NI™ Protein Assay is composed of two simple steps:
- Universal Protein Precipitating Agent (UPPA™) is added to the protein solutions to rapidly precipitate total protein. Protein is immobilized by centrifugation and interfering agents in the supernatant are discarded.
- Protein concentration is assayed by mixing with an alkaline solution containing a known concentration of copper salt; the copper ions bind to the peptide backbone and the assay measures the unbound copper ions (see figure 2). The assay is independent of protein side chains minimizing protein-to-protein variation (see figure 3). The color density is inversely proportional to the amount of protein.
The assay is supplied with a traditional bovine serum albumin (BSA) protein standard or a non animal protein standard.
- Linear response 0.5µg-50µg protein
- Small sample requirement, only 1-50µl
- Unaffected by non-protein chemicals and agents
- Protocol time: ~30 minutes
- Long Shelf Life
Applications
- Estimate protein during protein purification, electrophoresis, cell biology, molecular biology, and other research applications.
- Suitable for protein samples containing common laboratory agents, such as reducing agents
(ß-mercaptoethanol, dithiothreitol), chelating agents (EDTA), detergents, amines (Tris), sugars and many other agents. - Suitable for samples containing chaotropic agents such as urea, thiourea, guanidine hydrochloride, guanidine thiocyanate, ammonium sulfate, drugs, antibiotics, cobalt, and numerous other agents and extraction buffers.
- Suitable for determination of protein concentration in cellular fractions, tissue & cell lysates and chromatography purification fractions.
- Suitable for dilute protein solutions.
Compound |
Concentration |
Compound |
Concentration |
Ammonium sulfate |
40% |
N-Octyl glucoside |
0.5% |
Brij® 35 |
1% |
Phosphate buffer |
0.2M |
CHAPS |
1% |
Sarcosyl |
1% |
CHAPSO |
1% |
Sodium azide |
0.1M |
CTAB |
1M |
Sodium dodecyl sulfate (SDS) |
1% |
Digitonin |
0.3% |
Sucrose |
30% |
DTT |
10mM |
TCEP |
15mM |
EDTA |
10mM |
Thesit® |
2% |
Glycerol |
30% |
Thiourea |
2M |
Guanidine.HCl |
6M |
Tris |
0.2M |
Guanidine thiocyanate |
6M |
Triton® X-100 |
3% |
HEPES |
0.1M |
Triton® X-114 |
1% |
Iodoacetamide |
15mM |
Tween® 20 |
2% |
2-mercaptoethanol |
0.5% |
Urea |
8M |
Table 2: NI™ Protein Assay is compatible with strong chaotropic extraction buffers
Buffer composition | Buffer composition |
4M urea, 1% SDS, 10mM EDTA, 0.8% 2-mercaptoethanol | 1% Sarcosyl, 0.8% 2-mercaptoethanol, 4M guanidine thiocyanate, 10mM EDTA |
6M urea, 2M thiourea, 4% CHAPS | 6M urea, 2M thiourea, 2% CHAPS, 2% ND SB 201 |
6M urea, 2M thiourea, 4% Nonidet® P-40 | 6M urea, 2M thiourea, 2% CHAPS, 2% SB 2 10 |
Protocol | |
786-005 | ![]() |
786-896 | ![]() |
Material Safety Data Sheet | |
786-005 | |
786-896 |
Technical Literature | |
A Non-Animal Alternative to BSA Protein Standards | |
Bioassays Handbook | |
Protein Assay Handbook & Selection Guide | An introduction to protein assays. |
- Gulyassy, P. et al (2022) The Effect of Sleep Deprivation and Subsequent Recovery Period on the Synaptic Proteome of Rat Cerebral Cortex. MOL NEUROBIOL. https://doi.org/10.1007/s12035-021-02699-x
- Jozwiak-Bebenista, M. et al (2022) The importance of endoplasmic reticulum stress as a novel antidepressant drug target and its potential impact on CNS disorders. PHARMACEUTICS. https://doi.org/10.3390/pharmaceutics14040846
- Qu, Guanggang et al (2022) Immunoproteomic analysis of the sporozoite antigens of Eimeria necatrix. VET PARASITOL. https://doi.org/10.1016/j.vetpar.2021.109642
- Xie, ZX. et al (2022) Metabolic tuning of a stable microbial community in the surface oligotrophic Indian Ocean revealed by integrated meta-omics. MAR LIFE SCI TECHNOL. https://doi.org/10.1007/s42995-021-00119-6
- "Curto, Pedro et al (2021) The Retropepsin-Type Protease APRc as a Novel Ig-Binding protein and Moonlighting Immune Evasion Factor of Ricksettsia. MBIO. https://doi.org/10.1128/mBio.03059-21
- "Hogstedt, A. et al (2021) Investigation of proteins important for microcirculation using in vivo microdialysis after glucose provocation: a proteomic study. SCI REP. https://doi.org/10.1038/s41598-021-98672-8"
- "Sidor, Ewelina et al (2021) Searching for Differences in Chemical Composition and Biological Activity of Crude Drone Brood and Royal Jelly Useful for Their Authentication. FOOD. https://doi.org/ 10.3390/foods10092233"
- Arruda, Isabel R.S. et al (2021) Xyloglucan and Concanavaln A based dressings in the topical treatment of mice wound healing process. CARBOHYD POLYM. https://doi.org/10.1016/j.carpta.2021.100136
- Benabdelkamel, Hicham et al (2021) Proteomics Profiling of the Urine of Patients with Hyperthyroidism after Anti-Thyroid Treatment. MOLECULES. https://doi.org/10.3390/molecules26071991
- Chua, Wan-Zhen et al (2021) High-Throughput Mutagenesis and Cross-Complementation Experiments Reveal Substrate Preference and Critical Residues of the Capsule Transporters in Streptococcus pneumoniae. MBIO. https://doi.org/10.1128/mBio.02615-21
- Marcelino, Isabel et al (2021) Revisiting Ehrlichia ruminantium Replication Cycle Using Proteomics: The Host and the Bacterium Perspectives. MICROORGANISMS. https://doi.org/103390/microorganisms9061144
- Marques, T.M. et al (2021) Identification of cerebrospinal fluid biomarkers for parkinsonism using a proteomics approach. NPJ PARKINSONS DIS. https://doi.org/10.1038/s41531-021-00249-9
- Palmer, Lee (2021) Novel Sources of Food Allergens. FOOD SCI TECHNOL.
- Pan, Limei et al (2021) Comparative proteomic analysis of the fungal pathogen Neoscytalidium dimidiatum infection in the pitaya. HORTIC ENVIRON BIOTE. https://doi.org/10.1007/s13580-021-00341-2
- Ribeiro, Miguel et al (2021) Mthicillin-Resistant Staphylococcus aureus Proteom Response to Antibiotic Stress Provides Insights for New Therapeutic Strategies. OMICS. https://doi.org/10.1089/omi.2021.0151
- Rodriquez-Vazquez, Mariana et al (2021) Overexpression and extra-mitochondrial localization of the chaperonin Hsp60 in ameloblastoma. J ORAL BIOSCIENCES. https://doi.org/10.1016/j.job.2021.05.001
- SchmeiBer, Wolfgang et al (2021) Transthyretin as a target of alkylatioin and a potential biomarker for sulfur mustard poisoning: Electrophoretic and mass spectrometric identification and characterization. DRUG TEST ANAL. https://doi.org/10.1002/dta.3146
- Tan, Wei Miao et al (2021) Trichloroacetic Acid/Acetone precipitation Method to Optimize Canine Synovial Fluid for One and Two-Dimentional Gel Electrophoresis Studies. SAINS MALAYS. http://doi.org/10.17576/jsm-2021-5011-13
- Urban, Milan O. et al (2021) The Resistance of Oilseed Rape Microspore-Derived Embryos to Osmotic Stress is Associated With the Accumulation of Energy Metabolism Proteins, Redox Homeostasis, Higher Abscisic Acid, and Cytokinin Contents. FRONT PLANT SCI. https://doi.org/10.3389/fpls.2021.28176
- Wang, Webin et al (2021) Identification of a specific surface epitope of OmpC for Escherichia coli O157:H7 with protein topology facilitated affinity mass spectrometry. APPL MICROBIOL BIOT. https://doi.org/10.1007/s00253-021-11511-8
- Zhang, Kaiqin et al (2021) Manganese exposure causes movement deficit and changes in protein profile of the external globus pallidus in Sprague Dawley Rats. TOXICOL IND HEALTH. https://doi.org/10.1177/07482337211022223
- Zhou, Yuefang et al (2021) Mutation of the EPHA2 Tyrosine-Kinase Domain Dysregulates Cell Pattern Formation and Cytoskeletal Gene Expression in the Lens. CELLS. https://doi.org/10.3390/
- Zhu, Jiajie et all (2021) Comparative splenic proteomic analysis of susceptible and resistant GIFT tilapia following challenge with Streptococcus agalactiae. AQUACULT INT. https://doi.org/10.1007/s10499-021-00683-9
- Anna, M. K. et al (2020) Upregulation of CRISP‐3 and kallikrein in stallion seminal plasma is associated with poor tolerance of cooled storage. Upregulation of CRISP‐3 and kallikrein in stallion seminal plasma is associated with poor tolerance of cooled storage. doi.org/10.1111/rda.13643
- Capitanio, D. et al (2020) Comparative proteomic analyses of Duchenne muscular dystrophy and Becker muscular dystrophy muscles: changes contributing to preserve muscle function in Becker muscular dystrophy patients. J CACHEXIA SARCOPENI.
- Cortes, J et al (2020) FPO. doi: freepatentsonline.com/y2020/0369732.html
- Dae, Y. Y. et al (2020) Entacapone Treatment Modulates Hippocampal Proteins Related to Synaptic Vehicle Trafficking. Cells.doi.org/10.3390/cells9122712
- Dier, M. et al (2020) Elevated Atmospheric CO2 Concentration Has Limited Effect on Wheat Grain Quality Regardless of Nitrogen Supply.J. Agric. Food Chem.doi.org/10.1021/acs.jafc.9b07817
- Gonçalves, NM. et al (2020) SUMOylation of rice DELLA SLR1 modulates transcriptional responses and improves yield under salt stress. bioRxiv. 10.1101/2020.03.10.986224
- Hands, C. M. et al (2020) A multiple reaction monitoring method for determining peanut (Arachis hypogea) allergens in serum using quadrupole and time-of-flight mass spectrometry. Anal Bioanal Chem. doi.org/10.1007/s00216-020-02508-9
- Huang, L. et al. (2020) Metabolites. doi.org/10.3390/metabo10040146
- Jaswal, S. et al (2020) In-depth proteome analysis of more than 12,500 proteins in buffalo mammary epithelial cell line identifies protein signatures for active proliferation and lactation. Sci Rep. 10:4834
- Kim, J. et al. (2020) Plant Pathol. J. https://doi.org/10.5423/PPJ.NT.02.2020.0037
- Lee, Y. et al (2020) Monitoring rice anther proteome expression patterns during pollen development. Plant Biotechnol Rep. 10.1007/s11816-020-00599-5
- Li, A. et al (2020) Acetylome Analysis Reveals Population Differentiation of the Pacific Oyster Crassostrea gigas in Response to Heat Stress. Mar Biotechnol. 22:233–245
- Li, L. et al (2020) Proteomics analysis of potential serum biomarkers for insulin resistance in patients with polycystic ovary syndrome.Int. J. Mol. Med. doi.org/10.3892/ijmm.2020.4522.
- Moon, JY. et al (2020) Comparative proteomic analysis of host responses to Plasmodiophora brassicae infection in susceptible and resistant Brassica oleracea. Plant Biotechnol Rep. 10.1007/s11816-020-00596-8
- Naula, C. et al (2020) 2D Gel Electrophoresis Analysis of Leishmania Proteomes. Methods Mol Biol. 2116:577‐586
- Oliveira, B. R. M et al (2020) Mitigation of Cd toxicity by Mn in young plants of cacao, evaluated by the proteomic profiles of leaves and roots. Ecotoxicology. doi.org/10.1007/s10646-020-02178-4.
- Palmer, L. et al (2020) Shellfish Tropomyosin IgE Cross‐Reactivity Differs Among Edible Insect Species. Molecular Nutrition & Food. 64(8):1900923
- Pires, SDS. et al. (2020) Antibiotics. doi.org/10.3390/antibiotics9100703
- Rehiman, S. H. Fibrinogen isoforms as potential blood-based biomarkers of Alzheimer's disease using a proteomics approach. Int J Neurosci. doi.org/10.1080/00207454.2020.1860038.
- Repetto, O. et al (2020) Proteomic Profiles and Biological Processes of Relapsed vs. Non-Relapsed Pediatric Hodgkin Lymphoma. Int J Mol Sci. 21:2185
- Rodriguez-Furlan, C. al (2020) Label-Free Target Identification and Confirmation Using Thermal Stability Shift Assays. Plant Chemical Genomics .doi.org/10.1007/978-1-0716-0954-5_14
- Rutigliano, M. et al (2020) Protein aggregation mechanism in UHT milk: supramolecular evidences. Eur Food Res Technol. 246:1081–1094
- Shin, H. et al (2020) Identification of ALDH6A1 as a Potential Molecular Signature in Hepatocellular Carcinoma via Quantitative Profiling of the Mitochondrial Proteome. J Proteome Res. 19(4):1684-1695
- Tatiana, L. et al (2020) Does Protein Glycation Impact on the Drought-Related Changes in Metabolism and Nutritional Properties of Mature Pea (Pisum sativum L.) Seeds? Int. J. Mol. Sci. 2020, 21, 567; doi:10.3390/ijms21020567
- Yin, Q. et al (2020) Leucine and mTORc1 act independently to regulate 2-deoxyglucose uptake in L6 myotubes. Amino Acids. doi.org/10.1007/s00726-020-02829-0.
- Yu, A. et al (2020) Comparative proteomic and transcriptomic analyses provide new insight into the formation of seed size in castor bean. BMC Plant Biol. 20:48
- Zubair, M. et al (2020) Identification of 60 secreted proteins for Mycoplasma bovis with secretome assay. Microbial Pathogenesis. 143:104135
- Alaminis-Castillo, M. A. et al (2019) Increased PON lactonase activity in morbidly obese patients is associated with impaired lipid profile.Int. J. Clin. Pract.doi.org/10.1111/ijcp.13315
- Ali, SA. et al (2019) Proteomics fingerprints of systemic mechanisms of adaptation to bile in Lactobacillus fermentum. Journal of Proteomics. 2019:10.1016/j.jprot.2019.103600
- Bewersdorff, T. et al (2019) Amphiphilic nanogels: influence of surface hydrophobicity on protein corona, biocompatibility and cellular uptake. INT J NANOMED. 14: 7861
- Bhuiyan, F. et al (2019) Characterizing fruit ripening in plantain and Cavendish bananas: A proteomics approach. J PROTEOMICS. 214:103632
- Cao, W. et al (2019) Evaluation of N-terminal labeling mass spectrometry for characterization of partially hydrolyzed gluten proteins. J PROTEOMICS. 210:103538
- Contreras, A. (2019) Proteomic analysis reveals novel insights into tanshinones biosynthesis in Salvia miltiorrhiza hairy roots.sci rep. 9:5768.
- Dietl, A. et al (2019) Skeletal muscle alterations in tachycardia-induced heart failure are linked to deficient natriuretic peptide signalling and are attenuated by RAS-/NEP-inhibition. PLOS ONE. DOI:10.1371/journal.pone.0225937
- Gaucher, F. Data from a proteomic analysis highlight different osmoadaptations in two strain of Propionibacterium freudenreichii. Data in Brief. 28:104932
- Ghosh, R. et al (2019) Proteomic Changes in the Sound Vibration-Treated Arabidopsis thaliana Facilitates Defense Response during Botrytis cinerea Infection. Plant Pathol J. doi: 10.5423/PPJ.OA.11.2018.0248.
- Ghosh, R. et al (2019) Proteomic Changes in the Sound Vibration-Treated Arabidopsis thaliana Facilitates Defense Response during Botrytis cinerea Infection. PLANT PATHOLOGY J. 35(6):609-622. doi: 10.5423/PPJ.OA.11.2018.0248
- Grassia, G. et al (2019) Proteomic profile of hard corona of charged polystyrene nanoparticles exposed to sea urchin Paracentrotus lividus coelomic fluid highlights potential drivers of toxicity. ROY SOC CH.
- Jesus, Jemmyson. (2019) Proteomic and Ionomic Study for Identification of Biomarkers in Biological Fluid Samples of Patients with Psychiatric Disorders and Healthy Individuals. 10.1007/978-3-030-29473-1
- Leonova, T. et al (2019) TDrought-related changes in the metabolism and nutritional properties of mature pea (Pisum sativum L.) seeds in the context of protein glycation. Preprints. doi:10.20944/preprints201912.0133.v1
- Lima, BP. et al (2019) Streptococcus gordonii Type I Lipoteichoic Acid Contributes to Surface Protein Biogenesis. ADV EXP MED BIOL
- Low, W. K. et al (2019) Synergistic Ototoxicity of Gentamicin and Low-Dose Irradiation: Molecular Basis and Clinical Significance. Audiol Neurotol.doi.org/10.1159/000503133.
- Malaysia, S. et al (2019) Conference Proceedings – 4th International Conference on Molecular Diagnostics and Biomarker Discovery: Antibody Technology. BMC. 13(Suppl 8): 10.
- Mares, J. H. et al (2019) Hydrosoluble phylloplane components of Theobroma cacao modulate the metabolism of Moniliophthora perniciosa spores during germination.Fungal Biol.doi.org/10.1016/j.funbio.2019.11.008
- Mason, C. J. et al (2019) Divergent host plant utilization by adults and offspring is related to intra‐plant variation in chemical defences. J Anim Ecol
- Meneses-Romero ,E. et al (2019) Quantitative proteomic analysis reveals high interference on protein expression of H9c2 cells activated with glucose and cardiotonic steroids. J PROTEOMICS. 209:103536
- Muria-Gonzalez, M. J. et al (2019)Profile of the in vitro secretome of the barley net blotch fungus, Pyrenophora teres f. teres. Physiol. Mol. Plant Pathol.doi.org/10.1016/j.pmpp.2019.101451
- Muria-Gonzalez, MJ. (2019) Profile of the in vitro secretome of the barley net blotch fungus, Pyrenophora teres f. teres. PHYSIOL MOL PLANT P. https://doi.org/10.1016/j.pmpp.2019.101451
- Pavlíková, N. Upregulation of vitamin D-binding protein is associated with changes in insulin production in pancreatic beta-cells exposed to p,p′-DDT and p,p′-DDE. Sci Rep.9:18026
- Peng, X. et al (2019) Physiological and Proteomic Analyses Reveal Adaptive Mechanisms of Ryegrass (Annual vs. Perennial) Seedlings to Salt Stress. AGRON J. doi:10.3390/agronomy9120843
- Peng, X. et al (2019) Physiological and Proteomic Analyses Reveal Adaptive Mechanisms of Ryegrass (Annual vs. Perennial) Seedlings to Salt Stress. Agronomy. 9:843
- Ribeiro, M. et al (2019) Meningeal γδ T cell–derived IL-17 controls synaptic plasticity and short-term memory. SCIENCE IMMUNOLOGY. 4:40
- Vásquez-Procopio, J et al (2019) Intestinal response to dietary manganese depletion in Drosophila. Metallomics. 10.1039/C9MT00218A
- Wolf, J. et al (2019) Foliar Magnesium supply increases the abundance of RuBisCO of Mg-deficient maize plants. DOI:10.5073/JABFQ.2019.092.038
- Than, NG. et al (2018) Integrated Systems Biology Approach Identifies Novel Maternal and Placental Pathways of Preeclampsia. Frontiers in Immunology. 9:1661
- Yumnam, S. et al (2018) Identification of a novel biomarker in tangeretin‑induced cell death in AGS human gastric cancer cells.Oncol. Rep.https: doi: org/10.3892/or.2018.6730
- Bennett, M. et al (2017) A Novel Biomarker Panel to Identify Steroid Resistancein Childhood Idiopathic Nephrotic Syndrome. Biomarker Insights. DOI: 10.1177/1177271917695832
- Castano-Duque, L and Luthe D.S. (2017) Protein networks reveal organ-specific defense strategies in maize in response to an aboveground herbivore. Arthropod-Plant Interactions. https://doi.org/10.1007/s11829-017-9562-0
- Kuzniar, A. et el (2017) Semi-quantitative proteomics of mammalian cells upon short-term exposure to non-ionizing electromagnetic fields. PLoS One doi:10.1371/journal.pone.0170762
- Taruno, A. et al (2017) Post-translational palmitoylation controls the voltage gating and lipid raft association of CALHM1 channel. J Physiol.DOI: 10.1113/JP274164
- Lohnes, K. L. et al (2016) Combining High-throughput MALDI-TOF Mass Spectrometry and Isoelectric Focusing Gel Electrophoresis for Virtual 2D Gel-based Proteomics. Methods. DOI:10.1016/j.ymeth.2016.01.013
- Nagappan, A. et al (2016) Proteomic analysis of selective cytotoxic anticancer properties of flavonoids isolated from Citrus platymamma on A549 human lung cancer cells Mol. Med. Rep. DOI: 10.3892/mmr.2016.5666
- Zhou, Y. et al (2016) Lens ER-stress response during cataract development in Mip-mutant mice.Biochim. Biophys. Acta. doi:10.1016/j.bbadis.2016.05.003
- Ayyub, A. et al (2015) Mol Med Rep. http://dx.doi.org/10.3892/mmr.2015.3822
- Gorski, J.P. et al (2015) Deletion of Mbtps1 (PCSK8, S1P, SKI-1) in Osteocytes Stimulates Soleus Muscle Regeneration and Increased Size and Contractile Force with Age. Jbc. DOI:M115.686626.
- Kaur, G. et al (2015) PLOS. DOI: 10.1371/journal.pone.0136692
- Kaur, G. et al (2015) The peptidyl-prolyl cis-trans isomerase activity of the wheat cyclophilin, TaCypA-1, is essential for inducing thermotolerance in Escherichia coli. J. Biopen. 2:9
- Sathish, S. et al (2015) POJ 8:201
- Vasani, R. B. et al (2015) Microwave Heating of Poly(N-isopropylacrylamide)-Conjugated Gold Nanoparticles for Temperature-Controlled Display of Concanavalin A. Appl. Mater. Interfaces DOI: 10.1021/acsami.5b08765
- Wijeratne, A. B. et al (2015) ACS Appl Mater Interfaces. 7:11155
- Castellanos-Mendoza, A. et al (2014) Microbial Cell Factories 13:137
- Gallo, J. et al (2014) J. Mater. Chem. B. 2:868
- Kim, J. A. et al (2014) BMC Complement Altern Med. 14:379
- Liu, T. et al (2014) Int. J. Oncol. 44:467
- McGuire, J.D. et al (2014) Bone. 63:29
- McGuire, J.D. et al (2014) J. Dentistry. 42:626
- Mi, Y. et al (2012) JBC. 289:12157
- Mi, Y. et al (2014) JBC. 289:12157-12167
- Rossi, O. et al (2014) Mol Biotechnol. 57:84
- Yang, X. et al (2014) J. Cell. Biochem. 115:141
- Blech-Hermoni, Y. et al (2013) Dev. Dynam. 242:767
- Dasgupta, T. et al (2013) PLoS ONE 8(2): e56590
- Liu, T. et al (2013) Int. J. Oncol. 43:1125
- Miner-Williams, W. et al (2013) J. Anim. Physiol. Anim. Nutr. 97:
- Nagappan, A. et al (2013) BMC Biochem. 14:24
- Nagappan, A. et al (2013) Chem-Biol Interact. 206:143
- Peters, N.T. et al (2013) Mol. Microbio. 89:690
- Suliman, M. et al (2013) J. Proteomics. 78:508
- Wang, Y. et al (2013) Tumor Biol. 34:3649
- del Castillo, C.S. et al (2012) Fish Shellfish Immun. 32:79
- Guillon, F. et al (2012) J Exp Bot 63:739
- Liu, T. et al (2012) Int. J. Oncol. 41:2087
- Mendias, C.L. et al (2012) Muscle Nerve. 45:55
- Miner-Williams, W. et al (2012) Am. J. Clin. Nutr. 96:508
- Miner-Williams, W. et al (2012) Am. J. Clin. Nutr. 96:508
- Chang, L. et al (2011) Mol. Pharmaceutics. 8:1767
- El-Osta, M.A. et al (2011) J Biol Chem 286:19340
- Guillon, F. et al (2011) J Exp Bot 10:1093
- Park, S.B. et al (2011) PLoS ONE 6(3): e17629
- Sanchez, C.J. et al (2011) BMC Microbiol. 11:245
- Groves, B. et al (2010) PLoS ONE 5(1): e8877
- Larre, C. et al (2010) J. Exp. Bot. 61:1771
- Reddy, V.B. and Lerner, E.A. (2010) Brit. J. Dermatol. 163:532
- Xia, B. et al (2010) PLoS ONE 5(7): e11771
- Xu, Z. et al (2010) PLoS ONE 5(3): e9725
- Eismann, T. et al (2009) Am J Physiol Gastr Liver Physiol 296:G266
- Haffey, W.D. et al (2009) Adv. Enzyme Regul. 49:121
- Iibuchi, R. et al (2009) Jap. J. Vet. Res. 57:13
- Karbarz, M. et al (2009) J Biol Chem 284:414
- Miner-Williams, W. et al (2009) J. Agric. Food Chem. 57:2072
- Rintala, E. et al (2009) BMC Genomics. 10:461
- Stella, C.L. et al (2009) Am. J. Obstet. Gynecol. 201:387.e1
- Urbonavicius, S. et al (2009) J. Vasc. Surg. 49:455
- Wong, J.H. et al (2009) J. Cereal Sci. 49:73
- Xu, Z. et al (2009) J Cell Biol 186:343
- Yan, W. et al (2009) Proteomics. 3:116
- Bendezu, F. et al (2008) J Bacteriol 190:1792
- Gorski, J.P. et al (2009) Cell Tissues Organs. 189:25
- Kalsotra, A. et al (2008) PNAS 105:20333
- Lin, F.L. et al (2008_ Polymer Preprints. 49:1095
- Lyngholm, M. et al (2008) Exper. Eye Res. 87:96
- Ramachandran, P. et al (2008) Clin. Proteomics. 4:80
- Salusjarvi, L. et al (2008) Microbial CEll Fact. 7:18
- Yu, T.Y. et al (2008) Biochemistry. 47:13942
- Banowetz, G.M. et al (2007) J. Therm. Biol. 32:12
- Brobey, R.K. and Soong, L. (2007) Proteomics. 7:116
- Devouge, V. et al (2007) J. Proteome Res. 6:1342
- Donohoe, M.E. et al (2007) Molecular Cell. 25:43
- Huffman, N. et al (2007) J. Biol. Chem. 282:26002
- Shiels, A. et al (2007)Invest Ophthalmol Vis Sci. 48:500
- Vorum, H. et al (2007) Proteome Sci. 5:5
- Werner, M. et al (2007) J Biol Chem 282:5560
- Brobey, R.K. et al (2006) Braz. J. Infect. Dis. 10:1
- Dennison, S. et al (2006) Biophysical J. 90:1661
- DePinto, W. et al (2006) Mol Cancer Ther 5:2644
- Lawrence, D. et al (2006) Glia. 53:81
- Nielsen, K. et al (2006) Exp. Eye Res. 82:201
- Ramachandran, P. et al (2006) J. Proteome Res. 5:1493
- Reddy, V. et al (2006) J Biol Chem 281:16197
- Sun, B.K. et al (2006) Molec. Cell. 21:617
- Tao, T.Y. et al (2006) Plant Cell Rep. 25:848
- Cao, Y.N. et al (2005) Biochem. Piophys. Res. Comm. 332:866
- Ho, T. et al (2005) Hum Mol Genet. 14:1539
- Jarrold, B. et al (2005) Electrophoresis. 26:2269
- Park, G.S. et al (2005) Virology. 340:1
- Sørensen, B.S. et al (2005) Radiother. Oncol. 76:187
- Agnew, B.J. et al (2004) Electrophoresis. 25:2478
- Aoki, M. et al (2004) Acta Cryst. D60:439
- Banowetz, G.M. et al (2004) Anal Biochem. 332:314
- Busenlehner, L.S. et al (2004) Biochemistry. 43:11145
- Courville, T. et al (2004) J Biol Chem 279:3318
- Johnson, J. et al (2004) J Bacteriol 186:2481
- Macvaughton, T.B. and Lai, M. (2004) Meth. Mol. Med. 95:99
- Wong, J. et al (2004) Plant Cell Physiol 45:407
- Clarke, B.L. (2003) Meth. Mol. Biol. 228:151
- Endo, S. and Launey, T. (2003) Neuropharmacol. 45:863
- Gushwa, N. et al (2003) Plant Physiol 132:1925
- Lackner, L. et al (2003) J Bacteriol. 185: 735
- Loeb, D. et al (2003) Leukemia. 17:965
- Macnaughton, T. et al (2003) J Virol 77:12048
- Saito, K. et al (2003) Molecular Microbiology. 48:373
- Wu, K.H. et al (2003) Neuroendocrinol. 78:72
- Dennison, S.M. et al (2002) Biochemistry. 41:14925
- Janabi, N. (2002) J. Immunol. 168:4747
- Kilpatrick, L. et al (2002) Am J Physiol Cell Physiol 283:C48
- Loeb, D. et al (2002) J Biol Chem 277:19627
- McClowry, T.L. et al (2002) J. Med. Virol. 66:96
- Reeve, I. et al (2002) PNAS 99:8608
- Sun, S. et al (2002) Anal. Biochem. 307:287
- Waskewich, C. et al (2002) Cancer Res. 62:2029
- Xu, N. et al (2002) Am J Physiol Lung Cell Mol Physiol 282:L796
- Blumenthal, E. et al (2001) Clin. Cancer. Res. 7:3178
- Kasahara, K. et al (2001) Clin Endocrinol Metab. 86:1281
- Ladd, A. et al (2001) Mol Cell Biol 21:1285
- Poutanen, M. et al (Rap. Comm. Mass Spec. 15:1685
- Tatsumi, R. et al (2001) J. Musc. Res. Cell. Motil. 22:149
- Thibeault, D. et al (2001) J. Biol. Chem. 276:46678
- Tikunov, B. et al (2001) J. Appl. Physiol. 90:1927
- Timmerman, M. M. and Woods, J. P (2001) Infect. Immun. 69:7671
- Vasara, T. et al (2001) Mol. Microbiol. 42:1349
- Aoki, M. et al (2000) Acta Cryst. D56:1464
- Konno, R. et al (2000) Arch. Toxicol. 74:473