Fast Yeast Transformation™ (43 Citations)
Catalog
Description
Size
Price(USD)
Qty
Catalog
GZ-1
GZ-1
Description
Fast Yeast Transformation™
Fast Yeast Transformation™
Size
120 Preps
120 Preps
$231.00
$231.00
Fast Yeast Transformation™ kit is a rapid single step yeast transformation kit that takes less than 10 minutes to prepare competent yeast cells. The competent yeast cells can be used immediately or frozen for later use. This method is suitable for both circular and linear plasmid transformations. The protocol involves simply suspending yeast cells in the supplied Competent Buffer and the cells are then ready to receive transforming DNA. Introduce DNA to the competent cells and incubate for transformation.
Features
- High transformation efficiency: 105-106 transformants/μg circular DNA
- Broad spectrum: Compatible with C. albicans, S. pombe, P. pastoris, or S. cerevisiae
- Transformation procedure takes less than an hour
- Frozen competent cells are good for use for up to 6 months
- Simple protocol for multiple plasmid transformation
Applications
- For the generation of competent yeast cells
- Generates plasmids suitable for multiple downstream applications
Protocol | |
GZ-1 |
Material Safety Data Sheet | |
GZ-1 |
Technical Literature | |
Molecular Biology Handbook | A guide to our products for DNA and RNA. |
- Bhagat, Prakash Kumar et al (2022) Arabidopsis MPK3 and MPK6 regulates D-glucose signaling and interacts with G-protein, RGS1. PLANT SCI. https://doi.org/10.1016/j.plantsci.2022.111484
- Prasad, A. et al (2022) Interaction of ToLCNDV TrAP with SIATG8f marks it susceptible to degradation by autophagy. CELL MOL LIFE SCI. https://doi.org/10.1007/s00018-022-04281-7
- Zeng, Guisheng et al (2022) Comprehensive interactome analysis for the sole adenylyl cyclase cyr1 of Candida albicans. MBIO. https://doi.org/10.1128/spectrum.03934-22
- Woloschuk, Ryan M. et al (2021) Structure-based design of a photoswitchable afibody scaffold. PROTEIN SCI. https://doi.org/10.1002/pro.4196
- Farutani, M. et al (2020) Polar recruitment of RLD by LAZY1-like protein during gravity signaling in root branch angle control. Nat Commun.doi.org/10.1038/s41467-019-13729-7
- Yang, D. et al (2020) Candida albicans Ubiquitin and Heat Shock Factor-Type Transcriptional Factors Are Involved in 2-Dodecenoic Acid-Mediated Inhibition of Hyphal Growth. Microorganisms.doi.org/10.3390/microorganisms8010075
- Pradham, S. et al (2017) Genome-wide analysis of the CCCH zinc finger family identifies tissue specific and stress responsive candidates in chickpea (Cicer arietinum L.) PLoS One. https://doi.org/10.1371/journal.pone.0180469
- Deng, Y. et al (2016) Enhanced (S)‐linalool production by fusion expression of farnesyl diphosphate synthase and linalool synthase in Saccharomyces cerevisiae. Appl Microbiol. DOI: 10.1111/jam.13105
- Seneviratne, C.J. et al (2015) Sci Rep. doi:10.1038/srep12433
- Yanagisawa, M. et al (2015) Enzyme Microb. Technol. DOI: 10.1016/j.enzmictec.2015.08.013
- Jaiswal, D.K. et al (2014) Scientific Reports. 4:4177
- Masumura, T. et al (2014) Biosci. Biotechnol. Biochem. 79:566
- Mazumder, M. et al (2014) Nucl. Acids Res. 42:9514
- Pillai, J. K. et al (2014) Biometals. 27:1263
- Takada, Y. et al (2014) FEMS Yeast Res. 14:261
- Zeng, G. et al (2014) Nature Protocols. 9:464
- Liu, J. et al (2013) Appl. Microbiol. Biot. 97:6467
- Liu, J. et al (2013) J. Biotech. 168:446
- Ide, M. et al (2012) Arch. Microbiol. 194:243
- Kanatsu, Y. et al (2012) J. Biochem. 152:63
- Zeng, G. et al (2012) Mol. Biol. Cell. 23:3485
- Ito, J. et al (2011) Plant Cell Physiol. 52:539
- Kim, J. et al (2011) Plant Cell Physiol. 52:2136
- Nakamura, Y. et al (2011) Anal. Biochem. 412:159
- Yang, J. et al (2011) Mol. Microbiol. 79: 872
- Koszewski, N.J. et al (2010) J. Ster. Biochem. Mol. Biol. 120:200
- Takano, S. et al (2010) Plant Cell Physiol. 51:62
- Aihara, T. et al (2009) Biol. Reprod. 80:762
- Kikis, E. A. et al (2009) PLoS Genet. 5:e1000352
- Matsuda, M. et al (2009) Microb. Infect. 11:646
- Hayashi, C. et al (2008) J. Biol. Chem. 283:14801
- Tai, Y.S. (2008) Mol. Biol. Rep. 35:337
- Lin, Y. F. et al (2007) J. Biol. Chem. 282:16783
- Morokuma, Y. et al (2007) J. Biol. Chem. 282:24806
- Tai, Y. (2007) Am. J. Plant Physiol. 295
- Lin, Y. et al (2006) PNAS. 103:15617
- Ono, Y. et al (2006) J. Biol. Chem. 281:18519
- Asawatreratanakul, K. et al (2003) Euro. J. Biochem. 270:4671
- Ueki, N. and Hayman, M. J. (2003) J. Biol. Chem. 278:24858
- Uhl, M. et al (2003) EMBO J. 22:2668
- Xia, H. et al (2003) Plant Cell. 15:449
- Murooka, Y. et al (2002) J. Biosci. Bioeng. 94:225
- Osman, A. et al (2001) J. Biol. Chem. 276:10072