Your Cart

OmniPrep™ for Fungi

Catalog Description Size Price(USD) Qty
OmniPrep™ for Fungi For 2g Fungi

OmniPrep™ for Fungi provides an interactive version of this protocol where you can discover and share optimizations with the research community. 


A selection of genomic isolation kits are offered that purify high quality genomic DNA  from a wide variety of sources and for a wide array of applications.


Our OmniPrep™ genomic DNA kits are for ultra pure genomic DNA that is suitable for all downstream applications. These kits are fully scalable for large genomic DNA isolations. The procedure is slightly more involved to ensure ultra pure DNA.


Based on our popular OmniPrep™ system, the OmniPrep™ for Fungi kit isolates high quality genomic DNA from fungal samples. The kit isolates high purity (A260/A280 ratios of 1.8 to 2.0) DNA (approximately 100kbp), and the yield ranges from 0.2 to 1µg per 5mg fungal samples. When used according to protocol, the kit purifies DNA from one to two gram fungal tissues.


The OmniPrep™ for Fungi kit applys a rapid precipitation technique; this method uses unique precipitation reagents to isolate genomic DNA free from proteins and RNA.


The kit is supplied with our Molecular Grinding Resin™ for rapid release of DNA from fungal tissue.  Pure genomic DNA is isolated in 20 to 40 minutes, depending on the tissue type used.



  • High Yield: ~100kb genomic DNA
  • Quick and simple two-tube method
  • No toxic chemicals, phenol or hazardous waste
  • Supplied with Molecular Grinding Resin™ for efficient fungal disruption



  • Extraction of pure genomic DNA from cells & tissues, plant, fungi, bacteria, whole blood & other samples
  • Extraction of high quality genomic DNA
Material Safety Data Sheet
Technical Literature
Molecular Biology Handbook  A guide to our products for DNA and RNA.
Write a review
Note: HTML is not translated!
Bad Good
  • New, D. et al (2018) Identification of multiple species and subpopulations among Australian clinical Sporothrix isolates using whole genome sequencing. Med. Mycol.doi:org/10.1093/mmy/myy126.
  • Wabby, J. et al (2018) Specific detection of the wheat blast pathogen (Magnaporthe oryzae Triticum) by loop-mediated isothermal amplification. Plant
  • Jezic, M. et al (2018) Changes in Cryphonectria parasitica populations affects natural biological control of chestnut
  • Nichols, N.N. et al (2018) Use of green fluorescent protein to monitor fungal growth in biomass hydrolysate .Biol Methods Protoc.3:1.
  • Jacobs-Helber, S. et al (2002) JBC 277:4859
  • Li, X. et al (2002) Genome. 45:229
  • Villar, M. et al (2001) J Bacteriol 183:55
  • Yuan, C. et al (2017) Inheritance of Virulence, Construction of a Linkage Map, and Mapping Dominant Virulence Genes in Puccinia striiformis f. sp. tritici through Characterization of a Sexual Population with Genotyping-by-Sequencing. Phytopathology.
  • Berlin, A. et al (2017) Multiple genotypes within aecial clusters in Puccinia graminis and Puccinia coronata: improved understanding of the biology of cereal rust fungi. Fungal Biology and Biotechnology. DOI: 10.1186/s40694-017-0032-3
  • Rutter, W.B. et al (2017) Divergent and convergent modes of interaction between wheat and Puccinia graminis f. sp. tritici isolates revealed by the comparative gene co-expression network and genome analyses. BMC Genomics. DOI: 10.1186/s12864-017-3678-6
  • Beckerman, J. et al (2017) First Report of Pythium aphanidermatum Crown and Root Rot of Industrial Hemp in the United States. Plant Disease.
  • Jimenez, D. J. et al (2017)Draft Genome Sequence of Coniochaeta ligniaria NRRL 30616, a Lignocellulolytic Fungus for Bioabatement of Inhibitors in Plant Biomass Hydrolysates. Genome Announc. 5(4): e01476-16
  • Elmer, W.H. et al (2016) Incidence of Fusarium spp. on the invasive Spartina alterniflora on Chongming Island, Shanghai, China. Biol Invasions 18:2221
  • Nguyen, H.D.T. et al ( 2016) Ochratoxin A production by Penicillium thymicola. Fungal Biol. doi:10.1016/j.funbio.2016.04.002.
  • Solomon, K. V. et al (2016) Robust and effective methodologies for cryopreservation and DNA extraction from anaerobic gut fungi. Anaerobe. 38:39
  • Sipahi, H. et al (2015) Development of novel markers, using computationally extracted classi type est-ssrs, in wheat leaf rust funges Puccinia triticina. GENETIKA, 47:3.
  • Lee, S. et al (2015) Hum Ecol Risk Assess. DOI:10.1080/10807039.2015.103288
  • Noack-Schonmann, S. et al (2014) AMB Express 4:80
  • Cuomo, C. A. et al (2014) Genome Announc. 2(3): e00446-14
  • Elavarashi, E. et al (2013) J. Clin. Diagn. Res. 7:646
  • Shuey, M.M. et al (2013) Appl. Environ. Microbiol. doi: 10.1128/AEM.02897-13
  • Muller, L.K. et al (2013) Mycologia. 105:253
  • Jonkers, W. et al (2012) Appl Envir Microbiol 78:3656
  • Lorch, J. et al (2010) J Vet Diagn Invest 22:224
  • Ordonez, M.E. and Kolmer, J.A. (2007) Phytopathology 97:574
  • Latest Blog

    Download our handbooks

    Custom Services

    Connect With Us

    Stay up to date with G-Biosciences by signing up for our newsletter.