CB-X™ Protein Assay (133 Citations)
Protein assays are routinely used in many research fields to estimate proteins in a vast array of buffers and conditions. A major problem for researchers is to select a protein assay from the vast selection on the market that is compatible with their protein sample. CB-X™ Protein Assay eliminates this problem as it is designed to be compatible with all commonly used buffers and conditions in protein isolation, storage and assays.
For protein samples in simple, uncomplicated, aqueous buffers, CB-X™ is a highly sensitive, single reagent assay that can be performed in 5 minutes. CB-X™ Protein Assay uses a protein dye that is an improvement on the Bradford Coomassie dye reagent (Figure 1)
If the protein sample does not contain interfering agents, then a straightforward, single reagent assay is performed to give a linear response. If interfering agents are present or if artifactual results are produced, then the protein samples are treated with the clean up reagents and the protein is assayed to generate a linear response.
CB-X™ Protein Assay is supplied with lot-specific CB-X™ Tables. These allow researchers to perform single protein clean ups, subsequent assays, and then look up their absorbance in the CB-X™ Table to find the protein concentration. The CB-X™ Table eliminates the need for multiple protein standards and saves considerable time and effort. The table is prepared with a complex protein mixture that compares well with proteins from mammalian, plant, bacteria and yeast sources. The assay is supplied with a BSA protein standard or a non animal protein standard with Cat. # 786-12X or 786-894 respectively for generating curves when using CB-X™ Assay Dye alone or for researcher’s who prefer to generate their own standard curve or their own CB-X™ Table per their specific conditions.
DETERGENTS |
REDUCING AGENTS |
||
Brij® 35 |
2% |
2-mercaptoethanol |
1M |
CHAPS |
2% |
DTT |
1M |
CHAPSO |
2% |
CHAOTROPES |
|
Nonidet® P-40 |
2% |
Guanidine.HCl |
6M |
SDS |
2% |
Urea |
6M |
Triton® X-100 |
2% |
SALTS |
|
Tween® 20 |
2% |
Ammonium sulfate |
1M |
Deoxycholate |
0.1% |
MISCELLANEOUS |
|
SUGARS |
EDTA |
0.1M |
|
Glucose |
1M |
HEPES |
0.1M |
Sucrose |
25% |
MES |
0.1M |
Features
- Unique cleaning step removes all interfering agents, including detergents and chaotropes, to improve accuracy
- Clean up and assay performed in a single tube to ensure NO protein loss
- Sensitive: 0.5-50µg linear response
- High reliability and reproducibility
- Long shelf life- stable for 12 months
Applications
- An improved, sensitive Bradford assay for most samples, including problematic samples, that is compatible with ALL common laboratory agents
- CB-X™ has been used in a wide array of techniques (Ref. 1-6) and applications including:
- Protein estimation in protein purification, electrophoresis, immunoanalysis, cell biology, molecular biology and other research applications
- Protein samples containing common laboratory agents, detergent solubilized membrane proteins and dilute protein solutions
Protocol | |
786-12XT | |
786-11X | |
786-12X | |
786-894 |
Material Safety Data Sheet | |
786-12XT | |
786-11X | |
786-12X | |
786-894 |
Technical Literature | |
A Non-Animal Alternative to BSA Protein Standards | |
Bioassays Handbook | |
Plant Proteomics Handbook | |
Protein Assay Handbook & Selection Guide | An introduction to protein assays. |
Protein Assay Handbook & Selection Guide | An introduction to protein assays. |
- BenDavid, Ethan et al (2022) Host 5'-3' exoribonuclease XRN1 acts as a proviral factor for measles virus replication by downregulating the dsRNA-activaged kinase PKR. VIROLOGY. https://doi.org/10.1128/jvi.01319-22
- Das, Sanchita et al (2022) A novel role of secretory cytosolic tryparedoxin peroxidase in delaying apoptosis of Leishmania-Infected macrophages. MOL CELL BIOL. https://doi.org/10.1128/mcb.00081-22
- Grover, Sajjan et al (2022) Reprogramming of sorghum proteome in response to sugarcane aphid infestation. PLANT SCI. https://doi.org/10.1016/j.plantsci.2022.111289
- Misquitta, Naomi S. et al (2022) Combinatorial treatment with exercise and AICAR potentiates the rescue of myotonic dystrophy type 1 mouse muscles in a sex-specific manner. HUM MOL GENET. https://doi.org/10.1093/hmg/ddac222
- Osseni, A. et al (2022) Pharmacological inhibition of HDAC6 improves muscle phenotypes in dystrophin-deficient mice by downregulating TGF-(Beta) via Smad3 acetylation. NAT COMMUN. https://doi.org/10.1038/s41467-022-34831-3
- Bastock, Raeven A. (2021) Staphylococcus aureus Responds to Physiologically Relevant Temperature Changes by Altering Its Global Transcript and Protein Profile. mSphere 6. https://doi.org/10.1128/mSphere.01303-20
- Gu, Xiaosong et al (2021) A Lipid Bodies-Associated Galactosyl Hydrolase Is Involved in Triacylglycerol Biosynthesis and Galactolipid Turnover in the Unicellular Green Alga Chlamydomonas reinhardtii. PLANTS. https://doi.org/10.3390/plants10040675
- Iannetta, Anthony A. et al (2021) IreK-mediated, cell wall-protective phosphorylation in Enterococus faecalis. J PROTEOME RES. https://doi.org/10.1021/acs.jproteome.1c00635
- Moyer, Tessa B. et al (2021) Proteomic response of Escherichia coli to a membrane lytic and iron chelating truncated Amaranthus tricolor defensin. BMC MICROBIOL. https://doi.org/10.1186/s12866-021-02176-4
- Huang, L. et al (2020) Microalgal plastidial lysophosphatidic acid acyltransferase interacts with upstream glycerol-3-phosphate acyltransferase and defines its substrate selectivity via the two transmembrane domains. Algal Res. doi.org/10.1016/j.algal.2019.101758.
- Khajuria, M. et al. (2020) PPB. doi.org/10.1016/j.plaphy.2020.04.003
- Khajuria, M. et al. (2020) PPB. doi.org/10.1016/j.plaphy.2020.04.003
- Laver, J. D. et al (2020) The RNA-binding protein, Rasputin/G3BP, enhances the stability and translation of its target mRNAs. Biorxiv. doi: 10.1016/j.celrep.2020.02.066.
- Manu, K. et el (2020) Temperature mitigation strategies in Lepidium latifolium L., a sleeper weed from Ladakh himalayas. Environ Exp Bot. doi.org/10.1016/j.envexpbot.2020.104352
- Parker, SJ. et al (2020). Identification of Putative Early Atherosclerosis Biomarkers by Unsupervised Deconvolution of Heterogeneous Vascular Proteomes. Journal of Proteome Research. 10.1021/acs.jproteome.0c00118
- Rodríguez-Vázquez, R. et al (2020) Measuring quantitative proteomic distance between Spanish beef breeds. Food Chemistry. 315:126293
- Singh, AM. et al. (2020) Nat Commun. doi/10.1038/s41467-020-16340-3
- Birla, S. et al (2019) Characterization of a Novel POU1F1 Mutation Identified on Screening 160 Growth Hormone Deficiency Patients. HORM METAB RES. 51(04): 248-255
- Cuevas-Fernandez,B. et al(2019) Proteomics Analysis Reveals the Implications of Cytoskeleton and Mitochondria in the Response of the Rat Brain to Starvation.Nutrients.
- Gadon, A. et al (2019) Characterisation of high molecular weight hop proanthocyanidins using Analytical Ultracentrifugation. Sci Rep 9:12650
- Gong, F. et al(2019) Changes of carotenoids contents and analysis of astaxanthin geometrical isomerization in Haematococcus pluvialis under outdoor high light conditions. Aquac. Res.doi.org/10.1111/are.14427
- Lopez-Pedrouso, M. et al (2019) Gain‐of‐function variants of FtsA form diverse oligomeric structures on lipids and enhance FtsZ protofilament bundling.Food Res. Int.doi.org/10.1016/j.foodres.2019.01.037.
- Pitale, D.M. et al (2019) Leishmania donovani Induces Autophagy in Human Blood–Derived Neutrophils. J Immunol.DOI: https://doi.org/10.4049/jimmunol.1801053.
- Divya, T. et al (2018) Regulation of TGF-β/Smad Mediated Epithelial-Mesenchymal Transition by Celastrol Provides Protection against Bleomycin-induced Pulmonary Fibrosis.Basic Clin. Pharmacol. Toxicol.DOI: 10.1111/bcpt.12975
- K.M. Schoenemann, et al (2018) Gain‐of‐function variants of FtsA form diverse oligomeric structures on lipids and enhance FtsZ protofilament bundling.Mol. Microbiol.doi.org/10.1111/mmi.14069.
- Kumar, A. and Shaha, A. (2018) RBX1-mediated ubiquitination of SESN2 promotes cell death upon prolonged mitochondrial damage in SH-SY5Y neuroblastoma cells. Mol. Cell. Biochem. DOI:org/10.1038/emboj.2011.162.
- Kumar, A. and Shaha, A. (2018) SESN2 facilitates mitophagy by helping Parkin translocation through ULK1 mediated Beclin1 phosphorylation.Sci Rep. doi:10.1038/s41598-017-19102-2
- Kumar, N. et al (2018) Using ChIP-Based Approaches to Characterize FOXO Recruitment to its Target Promoters.Methods Mol. Biol.115:130.
- Ren, X. et al (2018) Fropofol decreases force development in cardiac muscle.FASEB J.DOI.org/10.1096/fj.201701442R.
- Sadaf, N. et al (2018) Arsenic trioxide induces apoptosis and inhibits the growth of human liver cancer cells. Life Sci. doi.org/10.1016/j.lfs.2018.05.006.
- Urasaki, Y. et al (2018) Detection of the Cell Cycle-Regulated Negative Feedback Phosphorylation of Mitogen-Activated Protein Kinases in Breast Carcinoma using Nanofluidic Proteomics. Sci.Rep. Vol 8:991.
- Aggarwal, S. et al (2017) Dynamics of regulatory T cells (Tregs) in patients with oral squamous cell carcinoma. J Surg Oncol.DOI: 10.1002/jso.24782
- Bernal, G. et al (2017) Identification and Mapping of Phosphorylated Isoforms of the Major Storage Protein of Potato Based on Two-Dimensional Electrophoresis. In.Tech. DOI: 10.5772/intechopen.70400
- Kumar, N. et al (2017) Analyzing the role of CagV, a VirB8 homologue of the type IV secretion system of Helicobacter pylori. FEBS Open Bio. DOI: 10.1002/2211-5463.12225
- Lopez-Pedrouso, M. et al (2017) Comparative proteomic profiling of myofibrillar proteins in dry-cured ham with different proteolysis indices and adhesiveness. J.foodchem. DOI: org/10.1016/.
- Ma, D. et al (2017) Upon Infection the Cellular WD Repeat-containing Protein 5 (WDR5) Localizes to Cytoplasmic Inclusion Bodies and Enhances Measles Virus Replication. J. Virol. DOI: 10.1128/JVI.01726-17
- Ovelleira, D et al (2017) Comparative proteomic study of early hypoxic response in the cerebral cortex of rats submitted to two different hypoxic models. Proteomics Clin Appl. DOI: 10.1002/prca.201700058
- Fu, Q. et al (2016) Multiple and Selective Reaction Monitoring Using Triple Quadrupole Mass Spectrometer: Preclinical Large Cohort Analysis.Methods Mol Biol.1410:249
- Goncalves, E. C. et al (2016) Nitrogen starvation‐induced triacylglycerol accumulation in the green algae: Evidence for a role for ROC40, a transcription factor involved in circadian rhythm. Plant J. DOI: 10.1111/tpj.13144
- Lu, J. et al (2016) Proline Absorption and SGK1 Expression are Inhibited in Intestinal Tis7 Transgenic Mice. Cell Physiol Biochem .38:1532.
- Mahale, S. et al (2016) The Light Intermediate Chain 2 Subpopulation of Dynein Regulates Mitotic Spindle Orientation. Sci Rep. doi:10.1038/s41598-016-0030-3
- Naghdi, F.G. et al (2016) Lipid extraction from wet Chaetoceros muelleri culture and evaluation of remaining defatted biomass. Algal Research 20:205
- Pedersen, J. N. et al (2016) JDS doi.org/10.3168/jds.2016-11343
- Soares, E. A. et al (2016) Label-free quantitative proteomic analysis of pre-flowering PMeV-infected Carica papaya L.J Proteomics.doi.org/10.1016/j.jprot.2016.06.025
- Warpeha, K.M. et al (2016) The dehydratase ADT3 affects ROS homeostasis and cotyledon development. Plant Physiology Preview. DOI:10.1104/pp.16.00464
- Zhang, Z. et al ( 2016) A new paradigm for producing astaxanthin from the unicellular green alga Haematococcus pluvialis. Biotechnol. Bioeng. DOI: 10.1002/bit.25976
- Zhang, Z. et al (2016) A new paradigm for producing astaxanthin from the unicellular green alga Haematococcus pluvialis. Biotechnol Bioeng. DOI: 10.1002/bit.25976
- Al-Rewashdy, H. et al (2015) Hum Mol Genet. 24:1243
- Ash, D. et al (2015) Am. J. Cancer Res. 5(2):481
- Bailey, J. K. et al (2015) J. Biol. Chem. 290:8987
- Duong, V. T. et al (2015) Front. Bioeng. Biotechnol. 3:53
- Franco, D. et al (2015) Data in Brief 4:100
- Karanikola, S.N. et al (2015) Parasit Vectors. 8:335
- Pedersen, J. N. et al (2015) Biochemistry. 54:4815
- Peladeau, Christine et al (2015) Hum. Mol. Genet. doi: 10.1093/hmg/ddv444
- Rosales-Soto, M.U. et al (2015) Lebenson Wiss Technol. doi:10.1016/j.lwt.2015.10.053
- Santhanasabapthy, R. et al (2015) Neuroscience. DOI: 10.1016/j.neuroscience.2015.08.067
- Al-Rewashdy, H. et al (2014) Hum. Mol. Genet. 24:1243
- Alvarez, S. et al (2014) J. Proteome. Res. 13:1688
- Bayer, M.L. et al (2014) PLoS ONE 9(1): e86078
- Kooij, V. et al (2014) Proteom Clin Appl.8:578
- Laouirem, S. et al (2014) J. Pathol. 234:452
- Loped-Pedrouso, M. et al (2014) J. Agric. Food Chem. 62:7200
- Papa, L. et al (2014) JBC 289:5412
- Peinado, M. A. et al (2014) J. Proteomics. 109:309
- Singh, M. et al (2014) Nanoscale. 6:12849
- Tripathi, R. et al (2014) J. Cell. Mol. Med.18:2275
- Wang, B. et al (2014) PLOS. PLoS ONE 9(9): e106679
- Aich, A. and Shaha, C. (2013) Mol. Cell. Biol. 33:4579
- Cañuelo, A. and Peragón, J. (2013) Proteomics. 13:3064
- Ferguson, A.A. et al (2013) PLoS Genet 9(12): e1004020
- Fu, Z. et al (2013) Proteom. Clin. Appl. 7:217
- Hartley, M.D. et al (2013) PNAS. 110: 20863
- Hernandez, R. et al (2013) Neuromol. Med. 15:82
- Kulkarni, Y.M. et al (2013) Analyst. 138:6986
- López-Pedrouso, M. et al (2014) Plant Mol. Biol. 84:415
- Martyniuk, C.J. and Alvarez, S. (2013) J. Proteomics. 79:28
- Rizwani, W. et al (2013) OJU. 3:232
- Rufino-Palomares, E. et al (2011) J. Proteomics. 83:15
- Schenck, C.A. et al (2013) Am. J. Botany. 100:194
- Battiston, K.G. et al (2012) Acta Biomater. 8:89
- Battiston, K.G. et al (2012) biomaterials. 33:8316
- Bhat, T. A. et al (2012) Carcinogenesis. 33:385
- Bhatia, V. et al (2012) PLoS ONE 7(10): e46343
- Calve, S. et al (2012) Am. J. Physiol. Cell. Physiol. 303:C577
- Deschamps, L. et al (2012) Neuroendocrinology. 95:214
- Galant, A. et al (2012) New Phytologist. 194:220
- Kulkarni, Y.M. and Klinke, D.J. (2012) Proteome Sci. 10:11
- Kumari, S. et al (2012) PLoS ONE 7(8): e44126
- Parker, J. et al (2012) J. Vis. Exp. 61: e3766
- Soufi, M. et al (2012) Gene. 499:218
- Urasaki, Y. et al (2012) PLoS ONE 7(5): e36775
- Wang, H. et al (2012) Method Mol. Biol. 876:83
- Zhu, N. et al (2012) J. Integ. Omics. 2:17
- Alvarez, S. et al (2011) Proteomics. 11:1346
- Doherty, F.C. and Sladek, C.D. (2011) Brain Res. 1388:89
- Dong, K.C. et al (2011) Structure. 19:1053
- Horrix, C. et al (2011) Cell. Mol. Life Sci. 68:1269
- Lu, Y. et al (2011) Plant J. 67:13
- Narayanan, N.N. et al (2011) PLoS ONE 6(7): e21996
- Rufino-Palomares, E. et al (2011) Proteomics. 11:3312
- Sapir, E. et al (2011) Genome Integrity. 2:9
- Sladek, C.D. et al (2011) Neuroscience.196:35
- Tripathi, R. et al (2011) Mol Cancer Ther 10:255
- Verma, S. et al (2011) PLoS ONE 6(9): e25273
- Wang, H. et al (2012) J. Proteome Res. 11:412
- Wang, H. et al (2012) J. Proteome Res. 11:487
- Gadeock, S. et al (2010) BBA-Biomemb. 1798:2058
- Jablonski, J.E. et al (2010) J. AOAC Inter. 93:213
- Jain, R. et al (2010) Cell. Microbiol. 12:432
- Wescombe, L et al (2010) Clin. Endocrin. 73:522
- Gomes, D.A. et al (2009) Am J Physiol Reg Integrat Comp 297:R940
- Li, B. et al (2009) Toxicol Sci 107:144
- Pawar, V. et al (2009) Mech. Ageing Dev. 130:501
- Song, Z. et al (2009) Am J Physiol Reg Integrat Comp 297:R478
- Subramanian, S. and Shaha, C. (2009) J. Cell. Mole. Med. 13:2317
- Subramanian, S. et al (2009) BMC Plant Biol. 9:119
- Cui, Y. et al (2008) J Bacteriol 190:4610
- Iyer, J.P. et al (2008) Mol. Microbio. 68:372
- Chatterjee, A. et al (2007) Appl. Envir. Microbiol. 73:3684
- Subramanian, M. and Shaha, C. (2007) J Immunol 179: 2330
- Cui, Y. et al (2006) J. Bacteriol 188:4715
- Laughton, J. et al (2006) Microbiol 152:1155
- Lee, K. et al (2006) Biochem. Biophys. Res. Comm. 349:1117
- Chatterjee, A. et al (2005) J Bacteriol 187:8026
- Cui, Y. et al (2005) J Bacteriol 187:4792
- Deszo, E.L. et al (2005) PNAS 102:5564
- Kump, D.S. and Booth, F.W. (2005) J Physiol 565:911
- Manikandan, K. et al (2005) Acta Cryst. 61:747
- Saradhi, M. et al (2005)Cell Res. 15:785
- Devillard, E. et al (2004) J Bacteriol 186:136
- Rincon, M. et al (2004) J Bacteriol 186:2576
- Shen, J. et al (2004) Cancer Res. 64:9018