femtoLUCENT™ PLUS-HRP (69 Citations)
femtoLUCENT™ PLUS is a femtogram level sensitive chemiluminescence immunodetection system that allows users the option to detect even hard-to-detect low abundance proteins. This immunodetection system is based on an innovative formulation of luminol and 1, 2 dioxetane, a supersensitive detection reagent for HRP (horseradish peroxidase). The chemiluminescence light emission can be recorded by a short exposure to autoradiography films.
femtoLUCENT™ PLUS-HRP reagents are available in three sizes suitable for 5, 25, 50 and 125 blots as each 4ml of working solution is suitable for 1 mini blot (8 x 7.5cm)
In addition, femtoLUCENT™ PLUS-HRP is also supplied in a kit format, containing our non-animal protein blocking agent (NAP BLOCKER™) and wash buffer (femto-TBST™). The femtoLUCENT™ PLUS-HRP kits allow detection of low femtogram levels (10-15) of antigens with low noise (signal/background) ratio. The kit reagents are sufficient for 25 mini blots or 1,500cm2 of PVDF or nitrocellulose membrane.
Features
- Reagents alone or kit formats
- Intense light emission with low background and high signal
- Supplied with a novel blocking agent to allow a rapid blocking step that produces a clear background
- Economical: greater value compared to similar products
Applications
- Quick and sensitive non-isotopic detection of proteins on transfer membranes (suitable for nitrocellulose & PVDF membranes)
- Immunodetection of proteins and antigens for Western blots and dot blot applications
- Low femtogram detection (10-15)that allows for detection of >10fg protein on a dot blot and >1pg on a Western blot
Protocol | |
786-003 | |
786-056 | |
786-081 | |
786-10 | |
786-10T |
Material Safety Data Sheet | |
786-003 | |
786-056 | |
786-081 | |
786-10 | |
786-10T |
Technical Literature | |
Western Blotting Handbook | From protein electrophoresis and Western transfer to blocking, probing and detection of membrane immobilized proteins. |
- Abdallah, Ihab M. et al (2023) Comparison of oleocanthal-low EVOO and oleocanthal agasint amyloid-(beta) and related pathology in a mouse model of alzheimer's disease. MOLECULES. https://doi.org/10.3390/molecules28031249
- Bhardwaj, Utkarsh & Singh, Sunit (2023) Zika virus NS1 suppresses VE-cadherin via hsa-miR-29b-3p/DNMT3b/MMP-9 pathway in human brain microvascular endothelial cells. CELL SIGNAL. https://doi.org/10.1016/j.cellsig.2023.110660
- Khan, R. et al (2023) mir-98-5p regulates gluconeogenesis and lipogenesis by targeting PPP1R15B in hepatocytes. J CELL COMMUN SIGNAL. https://doi.org/10.1007/s12079-023-00735-0
- Mondal, Basudeb et al (2023) Dual stimuli-responsive cross-linked nanoassemblies from an amphiphilic mannose-6-phosphate based tri-block copolymer for lysosomal membrane permeabilization. BIOMATER SCI-UK. DOI https://doi.org/10.1039/D2BM02110B
- Ramsakha, N. et al (2023) A vital role for PICK1 in the differential regulation of metabotropic glutamate receptor internalization and synaptic AMPA receptor endocytosis. Journal of Biological Chemistry https://doi.org/10.1016/j.jbc.2023.104837.
- Das, Sanchita et al (2022) A novel role of secretory cytosolic tryparedoxin peroxidase in delaying apoptosis of Leishmania-Infected macrophages. MOL CELL BIOL. https://doi.org/10.1128/mcb.00081-22
- Kandy, Swapa Kannothum et al (2022) Astaxanthin protection against neuronal excitotoxicity via glutamate receptor inhibition and improvement of mitochondrial function. MAR DRUGS. https://doi.org/10.3390/md20100645
- Kesharwani, Devesh et al (2022) miR-539-5p regulates Srebf1 transcription in the skeletal muscle of diabetic mice by targetting DNA methyltransferase 3b. MOL THER-NUCL ACIDS. https://doi.org/10.1016/j.omtn.2022.08.013
- Tiwari, S. et al (2022) 4-Phenylbutyrate mitigates the motor impairment and dopaminergi neuronal death during parkinson's disease pathology via targeting VDAC1 mediated mitochondrial function and astrocytes activation. NEUROCHEM RES. https://doi.org/10.1007/s11064-022-03691-0
- Yahya, Showket & Sudhandiran, Ganapasam (2022) Caffeic acid phenyl ester induces apoptosis in HT29 cells through the modulation of MAPK mediated cellular proliferation and heat shock proteins. RESEARCH SQUARE. https://doi.org/10.21203/rs.3.rs-1787502/v1
- Bhardwaj, Utkarsh & Singh, Sunit K. (2021) Zika Virus NS1 Suppresses VE-Cadherin and Claudin-5 via hsa-miR-101-3p in Human Brain Microvascular Endothelial Cells. MOL NEUROBIOL. https://doi.org/10.1007/s12035-021-02548-x
- Bhardwaj, Utkarsh & Singh, Sunit K. (2021) Zika Virus NS1 Suppresses VE-Cadherin and Claudin-5 via hsa-miR-101-3p in Human Brain Microvascular Endothelial Cells. MOL NEUROBIOL. https://doi.org/10.1007/s12035-021-02548-x
- Porier, Danielle L. et al (2021) Enemy of my enemy: A novel insect-specific flavirus offers a promising platform for a zika virus vaccine. VACCINES. https://doi.org/10.3390/vaccines9101142
- Porier, Danielle L. et al (2021) Enemy of My Enemy: A Novel Insect-Specific Flavivirus Offers a Promising Platform for a Zika Virus Vaccine. VACCINES. 2. https:// doi.org/10.3390/vaccines9101142
- Porier, Danielle L. et al (2021) Enemy of My Enemy: A Novel Insect-Specific Flavivirus Offers a Promising Platform for a Zika Virus Vaccine. VACCINES. 2. https:// doi.org/10.3390/vaccines9101142
- Rashida, Zeenat et al (2021) Kog1/Raptor mediates metabolic rewiring during nutrient limitation by controlling SNF1/AMPK activity. SIGNAL TRANSDUCTION. https://www.science.org/doi/10.1126/sciadv.abe5544
- Rashida, Zeenat et al (2021) Kog1/Raptor mediates metabolic rewiring during nutrient limitation by controlling SNF1/AMPK activity. SIGNAL TRANSDUCTION. https://www.science.org/doi/10.1126/sciadv.abe5544
- Schoger, Eric et al (2021) Establishment of a second generation homozygous CRISPRa human induced pluripotent stem cell (hiPSC) line for enhanced levels of endogenous gene activation. STEM CELL RES. https://doi.org/10.1016/j.scr.2021.102518
- Schoger, Eric et al (2021) Establishment of a second generation homozygous CRISPRa human induced pluripotent stem cell (hiPSC) line for enhanced levels of endogenous gene activation. STEM CELL RES. https://doi.org/10.1016/j.scr.2021.102518
- Bera, P. et al (2020) Induced apoptosis against U937 cancer cells by Fe(II), Co(III) and Ni(II) complexes with a pyrazine-thiazole ligand: Synthesis, structure and. Polyhedron. doi.org/10.1016/j.poly.2020.114503.
- Nicolaisen, TS. et al (2020) RES ART. doi.org/10.1096/fj.202001258RR
- Dagar, M. Phosphorylation of HSP90 by protein kinase A is essential for the nuclear translocation of androgen receptor. 294:8711
- Gupta, P. et al(2019) Ulmosides A: Flavonoid 6-C-glycosides from Ulmus wallichiana attenuates lipopolysacchride induced oxidative stress, apoptosis and neuronal death. Neurotoxicology.doi.org/10.1016/j.neuro.2019.02.017. 73:100.
- Nazir, SU. et al (2019) Manassantin B shows antiviral activity against coxsackievirus B3 infection by activation of the STING/TBK-1/IRF3 signalling pathway. SCI REP-UK. 9:9413
- Ganji, R. et al (2016) Understanding HIV-Mycobacteria synergism through comparative proteomics of intra-phagosomal mycobacteria during mono-and HIV co-infection. Srep. doi:10.1038/srep22060.
- Pandey, R.K. et al (2016) Leishmania donovani-Induced Increase in Macrophage Bcl-2 Favors Parasite Survival Front. Immunol., doi: 10.3389/fimmu.2016.00456
- Ganji, R. et al (2015) Cell. Microbiol. DOI: 10.1111/cmi.12516
- Ji, Q. et al ( 2015) Atrazine and malathion shorten the maturation process of Xenopus laevis oocytes and have an adverse effect on early embryo development. Tocicol In Vitro. 32:63
- Miller, N. et al (2015) J Neurosci. 35:6038
- Kumar, K. et al (2014) Mol. Pharmaceutics. 12:351
- Qin, N. et al (2014) Int J Cancer. 135:2054
- Tripathi, R. et al (2014) J. Cell. Mol. Med. 18:2275
- Aich, A. and Shaha, C. (2013) Mol. Cell. Biol. 33:4579
- Nair, V. Singh, S. and Gupta, Y.K. (2012) J. Ayurveda Integr. Med. 4:13
- Ahmad, F. et al (2011) J. Thromb. Haemost. 9:2077
- Kenedy, M. and Akins, D. (2011) Infect. Immunol. 79:1451
- Chen, L. et al (2010) Gastroenterology. 138:1123
- Chen, L. et al (2010) J. Gen. Virol. 91:382
- Hentschke, M. et al (2010) PLoS ONE 5(10): e13165
- Kenedy, M. et al (2009) Infect. Immunol. 77:2773
- Laspiur, J.P. et al (2009) J. Nutr. 139:1677
- Roth, K.M. et al (2009) Int. Immunol. 21:19
- Sow, F. et al (2009) J. Leukoc. Biol. 86:1247
- Stefanini, L. et al (2009) Blood. 114:2506
- Libaers, W. et al (2008) Proc. SPIE 6989, Photonic Crystal Materials and Devices VIII, 69890N (April 25, 2008); doi:10.1117/12.780261
- Van Zandt, K. et al (2008) J. Leukoc. Biol. 84:689
- Lasipur, J.P. et al (2007) J. Neuroimmunol. 192:157
- Fenton, J. et al (2006) Carcinogenesis. 27:1507
- Gopalakrishnan, R. and Chandra, N.C. (2006) Ind. J. Clin. Biochem. 21:8
- Fang, Y. and Svoboda, K. (2005) J. Cell. Biochem. 95:1108
- Fang, Y. and Svoboda, K. (2005) J. Clin. Periodontol. 32: 1200
- Fenton, J. et al (2005) Cancer Epid. 14:1646
- Wang, Y. et al (2005) J. Immunol. 174: 5687
- Bakke, L.J. et al (2004) Biol Reprod 71:605
- Czarnecka-Verner, E. et al (2004) Plant Mol. Biol. 56:57
- Li, Q. et al (2004) Reproduction 128:555
- Alvarez, G. et al (2003) J. Immunol. 171:6766
- Kang, P, and Svoboda, K. (2003) Orthodon. Craniofac. Res. 6:129
- Li, L. et al (2003) J. Biol. Chem. 278:4725
- Fenton, J.I. et al (2002) Carcinogenesis. 23:1065
- Gargett, C.E. et al (2002) J. Clin. Endocrinol. Metab. 87:4341
- Gargett, C.E. et al (2002) Mol. Hum. Reprod. 8:770
- Wu, S. et al (2002) BBA-Mol. Cell Res. 1542:41
- Aframian, D.J. et al (2001) Tissue Eng. 7:405
- Calhoun, D. et al (2001) Genome Biology. 2: research0030.1
- Gosset, G. et al (2001) J. Bacteriol. 183:4061
- Lebman, D. et al (2002) Int. J. Oncol. 20:1241
- Rondard, P. et al (2001) PNAS. 98:6150
- Wong, G. et al (2001) J. Biol. Chem. 276:20648