BLOT-FastStain™ (53 Citations)
Catalog
Description
Size
Price(USD)
Qty
Catalog
786-34
786-34
Description
BLOT-FastStain™
BLOT-FastStain™
Size
25 Blots
25 Blots
$287.00
$287.00
A unique stain for reversibly staining protein on nitrocellulose and PVDF transfer membranes.
BLOT-FastStain™ only stains protein and leaves the background absolutely untouched and brilliant white resulting in high band visibility. The staining procedure takes 10 minutes and has a sensitivity of 2ng BSA, higher than silver stains. Destain the membrane by simply rinsing in warm water for 10 minutes.
Staining and destaining does not affect the biological properties of the proteins. After destaining, protein bands can be probed with Western blot protocols and other analyses including sequencing work.
BLOT-FastStain™ is fully compatable with the LiCor Odyssey detection system and has succesfully been used as a loading control in this Odyssey system.
Features
-
Reversible stain for protein membranes
-
Compatible with PVDF and nitrocellulose membranes
-
Detect >2ng protein
Applications
- Staining of membranes for visualization of proteins onto the membrane after Western transfer and dot-blot applications
Protocol | |
786-34 |
Material Safety Data Sheet | |
786-34 |
Technical Literature | |
Membrane Stains for IR Imaging | Infrared (IR) Imaging of Western blots is a fast growing application with several companies offering imaging system and near infrared fluorophores. IR imaging offers many benefits over chemiluminescence and as a result popularity is growing. Despite the advancement in these detection system, the quality of the blot is still crucial and proper controls should be maintained. One key control is loading controls. Total protein stains are become widely accepted as loading controls over measuring housekeeping genes. The main reasons for this are: Take into account total protein profile not one single protein Fast, takes a few minutes as opposed to hours for antibody development Affordable as no expensive antibodies required Reversible, total protein stains can be completely removed The big question is "Are there IR Imaging System Compatible Stains?" Download the free application note to review independent data on the use of G-Biosciences reversible membrane stains! |
Western Blotting Handbook | From protein electrophoresis and Western transfer to blocking, probing and detection of membrane immobilized proteins. |
Certificate Of Analysis | |
786-34 |
- Nashif, Sereen K. et al (2023) Metformin impairs trophoblast metabolism and differentiation in dose dependent manner. BIORXIV. https://doi.org/10.1101/2023.02.14.528531
- Pawelec, Kendell M. et al (2023) Radiopaque implantable biomaterials for nerve repair. BIORXIV. https://doi.org/10.1101/2023.01.05.522860
- Stagg, David B. et al (2021) Diminished ketone interconverstion, hepatic TCA cycle flux, and glucose production in D-β-hydroxybutyrate dehydrogenase hepatocyte-deficient mice. MOL METAB. https://doi/org/10.1016/j.molmet.2021.10269
- Swiderski, Kristy et al (2021) Investigating the Potential for Sulforaphane to Attenuate Gastrointestinal Dhystfunction in mdx Dystrophic Mice. NUTRIENTS. https://doi.org/10.3390/nu13124559
- Swiderski, Kristy et al (2021) Phosporylation of ERK and dstrophin S3059 protects against inflammation-associated C2C12 motube atrophy. AM J PHYSIOL. https://doi.org/10.1152/ajpcell.00513.2020
- Zaepfel, Benjamin L. et al (2021) UPF1 reduces C9orf72 HRE-induced neurotoxicity in the absence of nonsense-mediated decay dysfunction. CELL REP. https://doi.org/10.1016/j.celrep.2021.108925
- Zaepfel, Benjamin L. et al (2021) UPF1 reduces C9orf72 HRE-induced neurotoxicity in the absence of nonsense-mediated decay dysfunction. CELL REPORTS. https://doi.org/10.1016/j.celrep.2021.108925
- Hayes, L. R. et al (2020) C9orf72 arginine-rich dipeptide repeat proteins disrupt karyopherin-mediated nuclear import. eLife. DOI: 10.7554/eLife.51685.
- Pinto, F. et al 2020) An expanded library of orthogonal split inteins enables modular multi-peptide assemblies. Nat Commun. doi.org/10.1038/s41467-020-15272-2
- Audia, J. P. et al (2018) Caspase-1 inhibition by VX-765 administered at reperfusion in P2Y12 receptor antagonist-treated rats provides long-term reduction in myocardial infarct size and preservation of ventricular function.Basic Res. Cardiol.jaudia@southalabama.edu <jaudia@southalabama.edu.doi.org/10.1007/s0039
- McHugh, C.A. et al (2018) RAP-MS: A Method to Identify Proteins that Interact Directly with a Specific RNA Molecule in Cells. Methods Mol. Biol.doi.org/10.1007/978-1-4939-7213-5_31
- Beagan, K. et al (2017) Drosophila DNA polymerase theta utilizes both helicase-like and polymerase domains during microhomology-mediated end joining and interstrand crosslink repair PLoS Genet.https://doi.org/10.1371/journal.pgen.1006813
- Brai, E. et al (2017) A Novel Ex Vivo Model to Investigate the Underlying Mechanisms in Alzheimer’s Disease. https://doi.org/10.3389/fncel.2017.00291
- Aniort, J. et al (2016) Upregulation of MuRF1 and MAFbx participates to muscle wasting upon gentamicin-induced Acute Kidney Injury. Int. J. Biochem. Cell Biol.doi:10.1016/j.biocel.2016.04.006
- Swiderski, K. et al (2016) GHIR doi.org/10.1016/j.ghir.2016.07.002
- Collins, M.A et al (2015)Total protein is an effective loading control for cerebrospinal fluid western blots.Neuroscience Methods/2015/251
- Collins, M.A. et al (2015) J. Neuro. Meth. 251:72
- Ham, D. J. et al (2015) J. Nutr. DOI: 10.3945/jn.114.203737
- Comer, B. S. et al (2014) Am J Physiol Lung Cell Mol Physiol. DOI: 10.1152/ajplung.00174.2014
- Comer, B. S. et al (2014) Am J Respir Cell Mol Biol. 52:438
- Ham, D. J. et al (2014) Amino Acids 46:2643
- Heda, G. et al (2014) Anal. Biochem. 445:67
- Ham, D.J. et al (2013) Clinical Nutrition. http://dx.doi.org/10.1016/j.clnu.2013.06.013
- Murphy, K.T. et al (2013) Am. J. Physiol. Regulatory Integrative Comp Physiol. 304:R854
- Murphy, K.T. et al (2013) Int. J. Cancer. 133:1234
- Martins, K.J.B. et al (2011) Appl. Physiol. Nutr. Me. 26:996
- Chora, S. et al (2010) Chemosphere. 81:1212
- Sarasin-Filipowicz, M. et al (2009) Mol Cell Biol 29:4841
- Tyther, R. et al (2009) Proteomics. Clin App. 3:338
- Tedesco, S. et al (2008) Marine Environ. Res. 66:131
- McDonagh, B. and Sheehan, D. (2007) Proteomics. 7:3395
- Tyther, R. et al (2007) Proteomics. 7:4555
- Dowling, V. et al (2006) Aquatic Toxicol. 77:11
- McDonagh, B. and Sheehan, D. (2006) Aquatic Toxicology. 79:325
- Norman, H. et al (2006) Eur. J. Physiol. 453:53
- Duong, F.H. et al (2005) J Virol 79:15342
- Nguyen, A.T. and Donaldson, R.P. (2005) Arch. Biochem Biophys. 439: 25
- Zagranichnaya, T.K. et al (2005) Physiol Genomics 21:14
- Duong, F.H. et al (2004) Gastroenterology 126:263
- Miura-Yokota, Y. et al (2004) Connect. Tis. Res. 45:109
- Brooks, J. and Fleschner, C.R. (2003) Ophthal. Res. 35: 8
- Ghezzi, P. and Bonetto, V. (2003) Proteomics. 3:1145
- Kang, Jiman and Turano, Frank J. (2003) PNAS 100:6872
- Mihm, M.J. et al (2003) Biochem. Pharmacol. 65: 1189
- Mizgerd, J. et al (2002) Am J Respir Cell Mol Biol 27:575
- Turano, F.J. et al (2002) Plant Sci. 163:43
- Dautzenberg, F.M. et al (2001) Am J Physiol Reg Integrat Comp 280:R935
- Spangenburg, E.E. et al (2001) Am. J. Physiol. Regulatory Integrative Comp Physiol. 280:R1256
- Aksenov, M. et al (2000) J Neurochem 74:2520
- Parseghian, M. et al (2000) Chromos. Res. 8:405
- Weinstein, D. M. et al (2000) J. Pharmacol. Exp. Ther. 294:396
- Tsibris, J.C.M. et al (1999) Cancer Res. 59:5737
- Yamashita, H. et al (1999) Mol Human Reprod 5:358