PhosphataseArrest™ Phosphatase Inhibitor Cocktail (44 Citations)

Catalog
Description
Size
Price(USD)
Qty
Catalog
786-647
786-647
Description
PhosphataseArrest™ I [100X]
PhosphataseArrest™ I [100X]
Size
24 x 100ul
24 x 100ul
$349.00
$349.00
Catalog
786-450
786-450
Description
PhosphataseArrest™ I [100X]
PhosphataseArrest™ I [100X]
Size
1ml
1ml
$234.00
$234.00
Catalog
786-782
786-782
Description
PhosphataseArrest™ I [100X]
PhosphataseArrest™ I [100X]
Size
2ml
2ml
$449.00
$449.00
Catalog
786-783
786-783
Description
PhosphataseArrest™ I [100X]
PhosphataseArrest™ I [100X]
Size
5ml
5ml
$689.00
$689.00
Catalog
786-784
786-784
Description
PhosphataseArrest™ I [100X]
PhosphataseArrest™ I [100X]
Size
10ml
10ml
$943.00
$943.00
Catalog
786-451
786-451
Description
PhosphataseArrest™ II [100X]
PhosphataseArrest™ II [100X]
Size
1ml
1ml
$72.00
$72.00
Catalog
786-452
786-452
Description
PhosphataseArrest™ III [100X]
PhosphataseArrest™ III [100X]
Size
1ml
1ml
$72.00
$72.00
The PhosphataseArrest™ phosphatase inhibitor cocktails are 100X concentrated, ready-to-use solutions that are simply added to your extraction buffers or samples. PhosphataseArrest™ is ideal for inhibition in tissue extractions and cell lysis experiments and is compatible with most common protein assays. In addition, PhosphataseArrest™ III is compatible with IEF/2D studies.
PhosphataseArrest™ I
- A broad spectrum phosphatase inhibitor cocktail consisting of five phosphatase inhibitors that target all the phosphatase categories: serine/threonine (Ser/Thr) specific, tyrosine specific and dual specificity phosphatases
- A stabilized solution of sodium fluoride, sodium orthovanadate, sodium pyrophosphate, ß-glycerophosphate and sodium molybdate
PhosphataseArrest™ II
- A phosphatase inhibitor cocktail consisting of five phosphatase inhibitors that target acid, alkaline and tyrosine phosphatases
- Contains optimized concentrations of sodium fluoride, sodium tartrate, sodium orthovanadate, imidazole and sodium molybdate
PhosphataseArrest™ III
- A phosphatase inhibitor cocktail consisting of three phosphatase inhibitors that target both serine/threonine and alkaline phosphatases
- A stabilized solution of cantharidin, p-bromotetramisole oxalate and microcystin-LR
* If samples have high phosphatase activity then the PhosphataseArrest™ inhibitor cocktails can be used at two to three times concentrations to ensure complete inhibition.
Features
- A selection of 100X concentrated inhibitor cocktails
- Stabilized and ready-to-use
- No resuspension required
Applications
- Complete phosphatase inhibition in tissue extractions and cell lysis experiments
- Protection of protein phosphatase groups
- Compatible with most common protein assays
- Compatible with IEF/2D studies (PhosphataseArrest™ III)
Protocol | |
786-647 | ![]() |
786-450 | ![]() |
786-782 | ![]() |
786-783 | ![]() |
786-784 | ![]() |
786-451 | ![]() |
786-452 | ![]() |
Material Safety Data Sheet | |
786-647 | |
786-450 | |
786-782 | |
786-783 | |
786-784 | |
786-451 | |
786-452 |
Technical Literature | |
Bioassays Handbook | |
Mass Spectrometry Sample Prep Handbook | A guide to the preparation of protein samples for Mass Spectrometry, including protein extraction, clean-up and peptide generation. |
Plant Proteomics Handbook | |
Protease & Phosphatase Inhibitors & Proteases Handbook | A handbook & selection guide for inhibitors of protease & phosphatases & for proteases & assays |
Protein Assay Handbook & Selection Guide | An introduction to protein assays. |
Protein Electrophoresis Handbook | A guide to 1D and 2D protein electrophoresis products, including protein markers, electrophoresis buffers, 2D electrophoresis reagents, clean-up reagents and stains. The guide also offers protein sample preparation products. |
Certificate Of Analysis | |
786-450 | |
786-452 |
- Dahariya, Swati et al (2021) Megakaryoblastic leukemia: a study on nobel role of clinically significant long non-coding RNA signatures in megakaryocyte development during treatment with phorbol ester. CANCER IMMUNOL IMMUN. https://doi.org/10.1007/s00262-021-02937-0
- Declerck, Ken et al (2021) Echinacea purpurea (L.) Moench treatment of monocytes promotes tonic interferon signaling, increased innate immunity gene expression and DNA repeat hypermethylated silencing of endogenous retroviral sequences. BMC COMPLEM ALTERN M. https://doi.org/10.1186/s12906-021-03310-5
- Dicks, Naomi et al (2021) Tauroursodeoxycholic acid/TGR5 signaling promotes surivival and early development of glucose-stressed porcine embryos. BIOL REPROD. https://doi.org/10.1093/biolre/ioab072
- Kim, D. et al (2020) Hindawi. doi.org/10.1155/2020/7642019
- Pitchaimani, V et al (2020) Neurochemistry International. doi.org/10.1016/j.neuint.2020.104745
- Baker, KS. et al (2019) Direct Amplification of Tissue Factor:Factor VIIa Procoagulant Activity by Bile Acids Drives Intrahepatic Coagulation. ARTERIOSCL THROM VAS. 39:2038–2048
- Lin, T. (2019) BIRC5/Survivin is a novel ATG12–ATG5 conjugate interactor and an autophagy-induced DNA damage suppressor in human cancer and mouse embryonic fibroblast cells. AUTOPHAGY. 2019:1671643
- Lin, TY. et al (2019) BIRC5/Survivin is a novel ATG12–ATG5 conjugate interactor and an autophagy-induced DNA damage suppressor in human cancer and mouse embryonic fibroblast cells. AUTOPHAGY. DOI:10.1080/15548627.2019.1671643
- Weeraphan, C. et al (2019) Phosphoproteome profiling of isogenic cancer cell‐derived exosome reveals HSP90 as a potential marker for human cholangiocarcinoma.Proteomics.doi.org/10.1002/pmic.201800159
- Bozic, J. et al (2018) Glucosamine prevents polarization of cytotoxic granules in NK-92 cells by disturbing FOXO1/ERK/paxillin phosphorylation.PLoS ONE. doi.org/10.1371/journal.pone.0200757.
- Bergan-Roller, H.E., et al (2017) Insulin and insulin-like growth factor-1 modulate the lipolytic action of growth hormone by altering signal pathway linkages. Gen Comp Endocrinol. http://doi.org/10.1016/j.ygcen.2017.04.005
- Haley, E. et al (2017) Acidic pH with coordinated reduction of basic fibroblast growth factor maintains the glioblastoma stem cell-like phenotype in vitro. J Biosci Bioeng. http://dx.doi.org/10.1016/j.jbiosc.2016.12.006.
- Shaefer-Ramadan, S. et al (2017) Transition metal dependent regulation of the signal transduction cascade driving oocyte meiosis. J Cell Physiol.DOI: 10.1002/jcp.26157
- Aykul, S. and Martinez-Hackert, E. (2016) Transforming Growth Factor-β Family Ligands Can Function as Antagonists by Competing for Type II Receptor Binding.J. Biol. Chem. 2016; 291:10792-10804.
- Durand, S. et al (2016) Hyperphosphorylation amplifies UPF1 activity to resolve stalls in nonsense-mediated mRNA decay. Nat. Commun. doi:10.1038/ncomms12434
- Hsieh, C. et al (2016) Persistent increased PKMζ in long-term and remote spatial memory. Neurobiol Learn Mem. DOI: 10.1016/j.nlm.2016.07.008
- Martin, J.S. et al (2016) A single 60‐min bout of peristaltic pulse external pneumatic compression transiently upregulates phosphorylated ribosomal protein s6. Clin Physiol Funct Imaging. DOI: 10.1111/cpf.12343
- Martin, J.S. et al (2016) Impact of external pneumatic compression target inflation pressure on transcriptome‐wide RNA expression in skeletal muscle. Physiol. Rep. DOI: 10.14814/phy2.13029
- Mobley C.B. et all (2016) Whey protein-derived exosomes increase protein synthesis and hypertrophy in C2C12 myotubes. Journal of Dairy Science. Doi 10.3168/jds.2016-11341
- Sharp, M.H. et al (2016) The Effects of Fortetropin Supplementation on Body Composition, Strength, and Power in Humans and Mechanism of Action in a Rodent Model. J. Am. Coll. Nutr. doi/10.1080/07315724.2016.1142403
- Thaker, K. et al (2016) Increased expression of ApoE and protection from amyloid-beta toxicity in transmitochondrial cybrids with haplogroup K mtDNA.Neurobiol. Dis.doi:10.1016/j.nbd.2016.04.005
- Wei, D. et al (2016) Inhibiting cortical protein kinase a in spinal cord injured rats enhances efficacy of rehabilitative training.Exp Neurol.283:365.
- Aykul,S.et PLoS ONE(2015) 10(1): e0114954.
- Bergan, H. et al (2015) Gen Comp Endocrinol. 217:1
- Siddappa, D. et al (2015) PLOS. 10(3): e0119387
- Watanabe, K. et al (2015) J Clin Biochem Nutr. 56:186
- Burcham, G. N. et al (2014) Am. J. Pathol. 184:3176
- Cao, J. et al (2014) BBA-Gen Subjects. 1840:1640
- Cao, J. et al (2014) Neurosciences. 272:58
- Karuppagounder, V. et al (2014) Int Immunopharmacol. 23:617
- Kumar, S. et al (2014) Apoptosis. 19:1069
- Makhmoudova, A. et al (2014) JBC. 289:9233
- Narayanaswamy, R. et al (2014) Mol Cell Biol. doi: 10.1128/MCB.00017-14
- Siddappa, D. et al (2014) Mol Reprod Dev. 81:655
- Bergan, H.E. (2013) J. Mol. Endocrinol. 51:213
- Bohrer, R.C. et al (2013) Reproduction. 146:325
- Lee, A.B. et al (2013) Nature. 493:416
- Bergan, H.E. (2012) Gen. Comp. Endocr. 176:367
- Dupuis, L. et al (2014) Reproduction. 147:221
- Lakshmanan, A.P. et al (2012) Biochem. Pharmacol. 83:653
- Yan, C. et al (2012) Mol Pharmacol 81:401
- Kai, L. and Levenson, A.S. (2011). Anticancer Res. 31:3323
- Siegel, D. et al (2011) J Pharmacol Exp Ther 336:874
- Garrido-Lecca, A. and Blumenthal, T. (2010) Mol Cell Biol 30:3887