FASTsilver™ (27 Citations)
FASTSilver™ is one of the most rapid and sensitive methods for detecting proteins and nucleic acids fractionated by PAGE. Staining is 100 times more sensitive than Coomassie Blue protein staining and 10 times more sensitive than ethidium bromide for DNA and RNA.
FASTsilver™ is a nanogram-sensitive, silver staining kit that ensures maximum visibility and sensitivity, both needed for critical analysis.
This unique formulation leaves exceptionally crystal clear backgrounds and produces sharp protein bands or nucleic acid images. FASTsilver™ detects as little as one nanogram BSA protein.
Unlike most silver staining kits, FASTsilver™ does not contain the protein modifier glutaraldehyde that makes protein bands unsuitable for protein digestion. Therefore, complete recovery of proteins and trypsin-digested peptides is permitted.
FASTsilver™ also stains nucleic acids and is able to detect as little as 0.3 nanograms.
The FASTsilver™ kit contains ready-to-use reagents for 25 mini gels and a simple protocol that takes as little as 60 minutes to yield perfect results.
Features
- Nanogram-sensitive
- Stains both nucleic acids & proteins
- Maximum visibility: produces crystal clear backgrounds & sharp protein bands
- Lower Detection Limit: 1ng/band
Applications
- Rapid detection of proteins & nucleic acids in polyacrylamide gels
- Sensitive silver staining
- Maximum visibility for critical analysis
Protocol | |
786-30 |
Material Safety Data Sheet | |
786-30 |
Technical Literature | |
Molecular Biology Handbook | A guide to our products for DNA and RNA. |
Protein Electrophoresis Handbook | A guide to 1D and 2D protein electrophoresis products, including protein markers, electrophoresis buffers, 2D electrophoresis reagents, clean-up reagents and stains. The guide also offers protein sample preparation products. |
Certificate Of Analysis | |
786-30 |
- Maloney, Michael T. et al (2023) Failure to thrive: impaired BDNF transport along the cortical-striatal axis in mouse Q140 neurons of Huntington's disease. BIOLOGY. https://doi.org/10.3390/ biology12020157
- Liu, R. et al (2018) Effect of nitric oxide on myofibrillar proteins and the susceptibility to calpain-1 proteolysis. Food Chem. doi.org/10.1016/j.foodchem.2018.10.005
- Evans, A.F. et al (2017) Biochemical characterization of metabolism-based atrazine resistance in Amaranthus tuberculatus and identification of an expressed GST associated with resistance. Plant Biotechnol J. doi: 10.1111/pbi.12711
- Krunic, S. et al (2017) Non-GMO potato lines with altered starch biosynthesis pathway confers increased-amylose and resistant starch properties. Starch. DOI: 10.1002/star.201600310
- Winkelmann, A. et al (2014) J Clin Invest. 124:696
- Zhao, X. et al (2014) Neuroscience. doi: 10.3791/51899
- Fischer, P.U. et al (2013) Am J Trop Med Hyg. 88:1035
- Jagota, S. and Rajadas, J. (2013) Med. Chem. Res. 22:3991
- Sharma, S. et al (2013) J. Plant Biochem. Biotechnol. DOI: 10.1007/s13562-013-0213-y
- Palaniyandi, S. et al (2012) PLOS. DOI: 10.1371/journal.pone.0031348
- Valentine, M.S. et al (2012) Cilia 1:16
- Faburay, B. et al (2011) BMC Microbio. 11:83
- Sung, K. et al (2011) J. Neurosci. Methods. 200:121
- Kim, Y.H. et al (2010) Meat Sci. 85:759
- Mohapatra, S.C. et al (2010) J. Biol. Inorg. Chem. 15:373
- Sajti, C.L. et al (2010) Appl. Phys. A 101:259
- Petersen, S. et al (2009) Appl. Surf. Sci. 255:5435
- Petersen, S. et al (2009) JLMN.4:71
- Kaplan, B. et al (2007) Brit. J. Maematol. 136:723
- Kaplan, B. et al (2005) Modern Pathol. 18:1610
- Ortega, N. et al (2005) Mol Biol Cell 16:3028
- Reed, D. et al (2005) Plant Cell Reports 24:15
- Melody, J.L. et al (2004) J Anim Sci 82:1195
- Venkatesh, S.G. et al (2004) Am J Physiol Cell Physiol 286:C365
- Delcroix, J.D. et al (2003)Neuron 39: 69
- Kralj, S. et al (2002) Appl. Envir. Microbiol. 68:4283
- Wu, C. et al (2002) Am J Respir Cell Mol Biol 26:731