OmniPrep™ for Fungi (30 Citations)
Protocols.io provides an interactive version of this protocol where you can discover and share optimizations with the research community.
A selection of genomic isolation kits are offered that purify high quality genomic DNA from a wide variety of sources and for a wide array of applications.
Our OmniPrep™ genomic DNA kits are for ultra pure genomic DNA that is suitable for all downstream applications. These kits are fully scalable for large genomic DNA isolations. The procedure is slightly more involved to ensure ultra pure DNA.
Based on our popular OmniPrep™ system, the OmniPrep™ for Fungi kit isolates high quality genomic DNA from fungal samples. The kit isolates high purity (A260/A280 ratios of 1.8 to 2.0) DNA (approximately 100kbp), and the yield ranges from 0.2 to 1µg per 5mg fungal samples. When used according to protocol, the kit purifies DNA from one to two gram fungal tissues.
The OmniPrep™ for Fungi kit applys a rapid precipitation technique; this method uses unique precipitation reagents to isolate genomic DNA free from proteins and RNA.
The kit is supplied with our Molecular Grinding Resin™ for rapid release of DNA from fungal tissue. Pure genomic DNA is isolated in 20 to 40 minutes, depending on the tissue type used.
Features
-
High Yield: ~100kb genomic DNA
-
Quick and simple two-tube method
-
No toxic chemicals, phenol or hazardous waste
-
Supplied with Molecular Grinding Resin™ for efficient fungal disruption
Applications
-
Extraction of pure genomic DNA from cells & tissues, plant, fungi, bacteria, whole blood & other samples
-
Extraction of high quality genomic DNA
Protocol | |
786-399 |
Material Safety Data Sheet | |
786-399 |
Technical Literature | |
Molecular Biology Handbook | A guide to our products for DNA and RNA. |
- Nuskern, Lucija et al (2022) Filling the Gap in Southern Europe - Diversity of Cryphonectria parasitica and Associated Mycovirus (Cryphonectria hypovirus 1) in Montenegro. J FUNGI. https://doi.org/10.3390/jof8060552
- "Tremblay, Emilie D. et al (2021) Four In Silico Designed and Validated qPCR Assays to Detect and Discriminate Tilletia indica and T. walkeri, Individually or as a Complex. BIOLOGY. https:// doi.org/10.3390/biology10121295"
- LeBlanc, Nicholas et al (2021) Mitochondrial Loci Enable Specific Quantitative Real-Time PCR Detection of the Pathogen Causing Contemporary Impatiens Downy Mildew Epidemics. APS PUBLICATIONS. https://doi.org/10.1094/PDIS-05-21-0933-RE
- Marin, J. et al (2021) Temporal and spatial genetic population structure of Cryphonectria parasitica and its associated hypovirus across an invasive range of chestnut blight in Europe. J Phytopathol . https://doi.org/10.1094/PHYTO-09-20-0405-R
- Harlan, M. G. et al (2020) Transcriptomics illuminate the phylogenetic backbone of tiger beetles . Biol J Linn Soc. doi.org/10.1093/biolinnean/blz195
- Gondal, A.S. et al (2019) Anastomosis Groups of Rhizoctonia solani associated with tomato foot rot in Pothohar Region of Pakistan. Sci Rep.
- Gondal, AS. Anastomosis Groups of Rhizoctonia solani associated with tomato foot rot in Pothohar Region of Pakistan. Sci Rep 9:3910.
- Nguyen, H. D. T. et al (2019) Genome sequencing and comparison of five Tilletia species to identify candidate genes for the detection of regulated species infecting wheat. IMA Fungus. 11:612
- Schultzhaus, Z. Genome Sequence of the Black Yeast Exophiala lecanii-corni. i. Microbiol Resour Announc 8:e01709-18.
- Beckerman, J. et al (2017) First Report of Pythium aphanidermatum Crown and Root Rot of Industrial Hemp in the United States. Plant Disease. http://dx.doi.org/10.1094/PDIS-09-16-1249-PDN
- Berlin, A. et al (2017) Multiple genotypes within aecial clusters in Puccinia graminis and Puccinia coronata: improved understanding of the biology of cereal rust fungi. Fungal Biology and Biotechnology. DOI: 10.1186/s40694-017-0032-3
- Jimenez, D. J. et al (2017)Draft Genome Sequence of Coniochaeta ligniaria NRRL 30616, a Lignocellulolytic Fungus for Bioabatement of Inhibitors in Plant Biomass Hydrolysates. Genome Announc. 5(4): e01476-16
- Rutter, W.B. et al (2017) Divergent and convergent modes of interaction between wheat and Puccinia graminis f. sp. tritici isolates revealed by the comparative gene co-expression network and genome analyses. BMC Genomics. DOI: 10.1186/s12864-017-3678-6
- Yuan, C. et al (2017) Inheritance of Virulence, Construction of a Linkage Map, and Mapping Dominant Virulence Genes in Puccinia striiformis f. sp. tritici through Characterization of a Sexual Population with Genotyping-by-Sequencing. Phytopathology. https://doi.org/10.1094/PHYTO-04-17-0139-R
- Elmer, W.H. et al (2016) Incidence of Fusarium spp. on the invasive Spartina alterniflora on Chongming Island, Shanghai, China. Biol Invasions 18:2221
- Nguyen, H.D.T. et al ( 2016) Ochratoxin A production by Penicillium thymicola. Fungal Biol. doi:10.1016/j.funbio.2016.04.002.
- Sipahi, H. et al (2015) Development of novel markers, using computationally extracted classi type est-ssrs, in wheat leaf rust funges Puccinia triticina. GENETIKA, 47:3.
- Solomon, K. V. et al (2016) Robust and effective methodologies for cryopreservation and DNAextraction from anaerobic gut fungi. Anaerobe. 38:39
- Lee, S. et al (2015) Hum Ecol Risk Assess. DOI:10.1080/10807039.2015.1032886
- Cuomo, C. A. et al (2014) Genome Announc. 2(3): e00446-14
- Noack-Schonmann, S. et al (2014) AMB Express 4:80
- Elavarashi, E. et al (2013) J. Clin. Diagn. Res. 7:646
- Muller, L.K. et al (2013) Mycologia. 105:253
- Shuey, M.M. et al (2013) Appl. Environ. Microbiol. doi: 10.1128/AEM.02897-13
- Jonkers, W. et al (2012) Appl Envir Microbiol 78:3656
- Lorch, J. et al (2010) J Vet Diagn Invest 22:224
- Ordonez, M.E. and Kolmer, J.A. (2007) Phytopathology 97:574
- Jacobs-Helber, S. et al (2002) JBC 277:4859
- Li, X. et al (2002) Genome. 45:229
- Villar, M. et al (2001) J Bacteriol 183:55