Trypsin, Mass Spectrometry Grade (55 Citations)
A Chemically Modified, TPCK treated, Affinity Purified Trypsin. G-Biosciences' Mass Spectrometry Grade Trypsin is chemically methylated to yield an enzymatically active protein with maximum trypsin specificity and extreme resistance to autolysis. In addition, the modified trypsin is TPCK treated to inactive the interfering chymotrypsin activity, and the resulting protein is affinity purified and lyophilized to produce our Mass Spectrometry Grade Trypsin. The resulting trypsin has a specific activity over 10,000 units per milligram protein. The maximum activity is in the pH range of 7 to 9 and activity is reversibly inactivated at a pH of 4.
Trypsin is a serine endopeptidase that specifically cleaves peptide bonds on the carboxy side of s-aminoethyl cysteine, arginine and lysine residues, and typically, there is little to no cleavage at arginyl-proline and lysyl-proline bonds. The distribution of these residues in proteins allows trypsin digestion to produce peptides that are readily identified by mass spectrometry. Native trypsin is prone to autolysis that results in pseudotrypsin, which exhibits a broader proteolytic specificity (a chymotrypsin-like activity) and trypsin fragments that interfere with sequence analysis.
Unlike other trypsin preparations, our Mass Spectrometry Grade Trypsin is highly stable. As a result, it can be stored for a long period of time without any loss of activity (See figure above)).
We supply two sources of Mass Spectrometry Grade Trypsin, either bovine or porcine. For mass spectrometry sequence analysis, a trypsin to protein ratio ranging from 1:20 to 1:100 is recommended. For convenience, our porcine Mass Spectrometry Grade Trypsin is supplied lyophilized as 20, 100 or 200µg vials with a specific resuspension buffer. Our bovine Mass Spectrometry Grade Trypsin is supplied lyophilized as 20µg vials with a specific resuspension buffer.
Features
- Mass Spec Grade Trypsin
- Ultra pure porcine or bovine trypsin (A recombinant human trypsin is also offered)
- Modified by methylation and TPCK treatment
- Resistant to autolysis and degradation
- Stable at ambient temperature and suitable for long term storage
- Specific activity: >10,000U/mg protein
Applications
- Digestion of proteins for sequence and peptide fragment analysis
- Suitable for sequencing and mass spectrometry applications
Protocol | |
786-245 | |
786-687 | |
786-690 | |
786-688 | |
786-693 | |
786-245B | |
786-687B |
Material Safety Data Sheet | |
786-245 | |
786-687 | |
786-690 | |
786-688 | |
786-693 | |
786-245B | |
786-687B |
Technical Literature | |
Mass Spectrometry Sample Prep Handbook | A guide to the preparation of protein samples for Mass Spectrometry, including protein extraction, clean-up and peptide generation. |
Protease & Phosphatase Inhibitors & Proteases Handbook | A handbook & selection guide for inhibitors of protease & phosphatases & for proteases & assays |
Protease & Phosphatase Inhibitors & Proteases Handbook | A handbook & selection guide for inhibitors of protease & phosphatases & for proteases & assays |
- Goudshelwar, R. et al (2022) Alterations in the pH of pancreatic juice are associated with chymotrypsin C inactivation and lithostatine precipitation in chronic pancreatitis patients: a proteomic approach. CLIN PROTEOM. https://doi.org/10.1186/s12014-022-09384-8
- Dukaew, N. et al (2020) Spandidos Publications. doi.org/10.3892/or.2020.7710
- Mitchell, NM et al. (2020) Jour. of Fungi. doi.org/10.3390/jof6040365
- Valencia, P. et al (2020) Sci Res. DOI: 10.4236/ajps.2020.1110110
- Fu, H. et al (2019)Biochemical characterization of the methylmercaptopropionate:cob(I)alamin methyltransferase from Methanosarcina acetivorans. doi.org/10.1101/548461.
- Chang, C.I. et al (2017) Determining the cleavage site for the mature antimicrobial peptide of Nile tilapia β-defensin using 2D electrophoresis, western blot, and mass spectrometry analysis. 62:41
- Dombret, C. et al (2017) Neural Mechanisms Underlying the Disruption of Male Courtship Behavior by Adult Exposure to Di(2-ethylhexyl) Phthalate in Mice. Environ Health Perspect. DOI:10.1289/EHP1443
- Polevoda, B. et al (2017) DNA Mutagenic Activity and Capacity for HIV-1 Restriction of the Cytidine Deaminase APOBEC3G Depends on Whether DNA or RNA Binds to Tyrosine 315 . J Biol Chem. doi: 10.1074/jbc.M116.767889
- Roy, J. et al (2017) Comparative proteomic investigation of metastatic and non-metastatic osteosarcoma cells of human and canine origin. PLoS One. https://doi.org/10.1371/journal.pone.0183930
- Schacherer, L. et al (2017) Quantification of intractable membrane proteins in genetically engineered crops by liquid chromatography coupled with tandem mass spectrometry. Anal. Methods. DOI: 10.1039/C7AY00161D
- Li-Hao, C. et al (2016)Comparative proteomic analysis of Litopenaeus vannamei gills after vaccination with two WSSV structural proteins. Fish Shellfish Immunol. 316:40.
- Liu, Y. et al (2016) Neuronal GPCR OCTR-1 regulates innate immunity by controlling protein synthesis in Caenorhabditis elegans. Sci. Rep. doi:10.1038/srep36832
- Merino-Jiménez, C. et al (2016) Dp71Δ 78‐79 dystrophin mutant stimulates neurite outgrowth in PC12 cells via upregulation and phosphorylation of HspB1. Proteomics. DOI: 10.1002/pmic.201500211
- Noratto, G. et al (2016) Red raspberry decreases heart biomarkers of cardiac remodeling associated with oxidative and inflammatory stress in obese diabetic db/db mice. Food Funct. DOI: 10.1039/C6FO01330A
- Schacherer, J. L. (2016) Rapid Detection of Proteins in Transgenic Crops without Protein Reference Standards by Targeted Proteomic Mass Spectrometry. J Sci Food Agric. DOI: 10.1002/jsfa.7612
- Yu-Kemp, H. and Brieher, W.M. ( 2016) Collapsin Response Mediator Protein-1 Regulates Arp2/3-dependent Actin Assembly* J. Biol. Chem.291:658
- Zhang, H. et al (2016) Deciphering a unique biotin scavenging pathway with redundant genes in the probiotic bacterium Lactococcus lactis. Sci Rep. doi:10.1038/srep25680
- Feng, Y. et al (2015) MicrobiologyOpen. 4:644
- Mirshafiee, V. et al (2015) Biomaterials. doi:10.1016/j.biomaterials.2015.10.019
- Mojica, L. et al (2015) Plant Foods Hum Nutr. 70:105
- Nagarajappa, S. H. et al (2015) J. Tradit. Complement. Med. DOI: 10.1016/j.jtcme.2014.11.027
- Zhang, H. et al (2015) Microbiologyopen. DOI: 10.1002/mbo3.307
- Fabre, E. et al (2014) Biochem. J. 457:347
- Feng, Y. et al (2014) Res Microbiol. 165:429
- Gahlaut, A. and Dabur, R. (2014) Int. J. Pharm. Pharm. Sci. 6:784
- Hu, D. et al (2014) Scientific Reports. doi:10.1038/srep04140
- Luk, B.T. et al (2014) Nanoscale. 6:2730
- Santhoshkumar, P. et al (2014) JBC. 289:9039
- Tiwari, R. et al (2014) Process Biochem. 49:1630
- Kannan, R. et al (2013) Biochemistry. 52:3638
- Kannan, R. et al (2013) PLOS. 8(6): e65610
- Khalifa, N.S. (2013) Acta Biol Cracov. Bot. 54: 79
- Lefebvre, T. et al (2013) Methods Mol. Biol. 1022:147
- Marty, M.T. et al (2013) Anal. Bioanal. Chem. 405:4009
- Sharma, R. et al (2013) J. Mol. Catal. B-Enzym. 91:8
- Walmsley, S.J. et al (2013) J. Proteome Res. 12:5666
- Aijian, A.P. et al (2012) Lab Chip. 12:2552
- Awabdh, A.A. et al (2012) J. Neurosci. 32:14227-14241
- Cam, A. and Gonzalez de Mejia (2012) Mol. Nutr. Food Res. 56:1569
- Coddeville, B. et al (2012) J. Proteomics. 75:5695
- Drougat, L. et al (2012) BBA-Gen Subject. 1820:1839
- Ly, S. and Lehrer, S.S. (2012) Biochemistry. 51:6413
- Mairesse, J. et al (2012) J. Proteomics. 75:1764
- Pedreschi, R. et al (2012) Nutrients. 4:132
- Feng, Y. and Cronan, J.E. (2011) Mol. Microbiol. 80:195
- Feng, Y. and Cronan, J.E. (2011) Mol. Microbiol. 81:1020
- Hassan, B. and Cronan, J. (2011) J Biol Chem 286:8263
- Hassan, B.H. and Cronan, J.E. (2011) JBC. 286:8263
- Khalifa, N.S. (2011) Int. J. Bio. 3:135
- Li, L. et al (2011) PNAS 108:9378
- Long, S.W. et al (2011) Bioscience Reports. 31(5):art:bsr0310333.doi:10.1042/BSR20100124
- Perrot, A. et al (2011) Blood. 118:e1
- Cawley, N.X (2010) AM J Physiol Endocrinol Metab. 299:E189
- Wu, C. et al (2010) PLOS. 5(3): e9784
- Prado, I. et al (2009) Method Mol. Biol. 525:517