ProteaseArrest™ Protease Inhibitor Cocktail (209 Citations)
A broad spectrum protease inhibitor cocktail solution that is provided as a 100X concentrated, ready-to-use solution. The cocktail contains a mix of reversible and irreversible inhibitors of serine, cysteine, calpain and metallo- proteases, including Aprotinin, PMSF, Leupeptin, Bestatin and AEBSF. An optional EDTA solution is provided for enhanced metalloprotease inhibition, and is provided separate as it would inhibit the activity of proteins that require divalent cations (Ca²+, Mg²+ or Mn²+) for their biological activity and will inhibit the purification of proteins using immobilized metal affinity chromatography (IMAC).
Sample Type & key features |
Inhibition Specificity |
1X Composition |
Concentration & Available Sizes |
For general use. EDTA is supplied in a separate vial |
Serine, cysteine, calpain and metallo-proteases |
668µM AEBSF 0.3µM Aprotinin 3µM Bestatin 5mM EDTA 5.25µM Leupeptin 1mM PMSF |
100X DMSO solution 24 x 100µl, 2ml, 5ml, 10ml, 5 x 10ml |
The ProteaseArrest™ 100X solution format is suitable for small, analytical sample applications, as >95% inhibition is achieved by adding 10µl ProteaseArrest™ per ml sample. For samples with higher than normal protease levels, the volume of ProteaseArrest™ added can be increased for greater inhibition levels. Protease levels can easily be assayed with our Protease Assays. Due to the optimized concentration of the various inhibitors, ProteaseArrest™ shows excellent inhibition of protease activities and is therefore suitable for the protection of proteins during preparation of samples and protein purification from animal tissues, plants, yeast and bacteria.
ProteaseArrest™ is also available as single use aliquots that are suitable for >95% protease inhibition in 10ml solutions. These OneQuant™ ProteaseArrest™ are provided for additional protease inhibitor cocktail convenience. ProteaseArrest™ is also offered as a dry format, as ProteCEASE™, for those who prefer reconstitution prior to use.
ProteaseArrest™ Outperforms Tablet Cocktails
The ProteaseArrest™ format allows delivery of optimized concentrations of protease inhibitor, for example 2X or higher concentrations can be added for tissues with higher than normal protease concentrations; a feature not possible with tablet format protease inhibitor cocktails. In our study, a 1X concentration of ProteaseArrest™ inhibits over 95% of protease activities (e.g. Mouse Pancreas Extract: 0.5 milligrams per milliliter of protein). The ProteaseArrest™ protease inhibitor cocktails demonstrate greater inhibition levels compared to similar protease inhibitor cocktails, including tablet formats (see figure). In independent studies, researchers have found that ProteaseArrest™ outperforms several leading manufacturer's protease inhibitor cocktails, including tablet formats, in the purification of plant proteins (1).
G-Biosciences Protease-Phosphatase Arrest provides full protection of protein samples from proteases and phosphatases released during the preparation of cell and tissue lysates. Our Protease-PhosphataseArrest™ contains both irreversible and reversible protease inhibitors to inhibit serine, cysteine and other proteases along with 5 phosphatase inhibitors that target all the phosphatase categories: serine/threonine (Ser/Thr) specific, tyrosine specific and dual specificity phosphatases.
Features
- Broad spectrum protease inhibitor cocktail with high inhibition levels: 1X concentration inhibits >95% of protease activities
- 100X concentrated, ready-to-use solution, just pipette what you need. No wastage.
- Versatile as a separate vial of EDTA, a metalloprotease, is provided to protect proteins that require metal ions or if IMAC is a downstream application.
- No proprietary ingredients, fully disclosed formulation of six broad range protease inhibitors, including AEBSF, Aprotinin, Bestatin, EDTA, Leupeptin and PMSF
- Multiple package sizes, including single-use packaging
- Compatible in nearly all lysis buffers.
Applications
- Complete inhibition of protease activities during protein preparations
- Suitable for yeast, plant, bacteria, fungal & animal tissue lysates
- Protection of proteins from proteolysis during preparation of samples, protein purification, electrophoresis, storage, assays & other applications
ProteaseArrest Family
The ProteaseArrest™ family of inhibitor cocktails also includes species specific inhibitor cocktails. These cocktails are enhanced with inhibitors specific for the species. Species specific cocktails are available for Bacteria, Plant, Yeast, Fungus and Mammalian samples.
Our Recom ProteaseArrest™ is designed for recombinant protein purification, particularly 6X His tagged proteins. These proteins are purified by IMAC (Immobilized Metal Affinity Chromatography), which is severely inhibited by the routinely used metalloproteases inhibitor EDTA. Recom ProteaseArrest™ contains a specific bacterial metalloproteases that does not interfere with 6X His protein purification.
Our FOCUS™ ProteaseArrest™ is designed to protect proteins destined for 2D electrophoresis and mass spectrometry analysis.
The TCM ProteaseARREST™ is a 200X concentrated liquid protease inhibitor cocktail designed for the protection of secreted proteins in tissue culture media (TCM).
Protease-PhosphataseARREST™ is supplied as a vial of ProteaseARREST™ and a vial of PhosphataseARREST™.
Protocol | |
786-108 | |
786-329 | |
786-437 | |
786-711 | |
786-712 | |
786-870 | |
786-871 | |
786-872 | |
786-889 |
Material Safety Data Sheet | |
786-108 | |
786-329 | |
786-437 | |
786-711 | |
786-712 | |
786-870 | |
786-871 | |
786-872 | |
786-889 |
Technical Literature | |
Mass Spectrometry Sample Prep Handbook | A guide to the preparation of protein samples for Mass Spectrometry, including protein extraction, clean-up and peptide generation. |
Plant Proteomics Handbook | |
Protease & Phosphatase Inhibitors & Proteases Handbook | A handbook & selection guide for inhibitors of protease & phosphatases & for proteases & assays |
ProteaseArrestâ„¢ Protease Inhibitor Cocktail Offers Over 90% Inhibition of Proteases | Improved protease inhibition compared to tablet cocktails |
Protein Electrophoresis Handbook | A guide to 1D and 2D protein electrophoresis products, including protein markers, electrophoresis buffers, 2D electrophoresis reagents, clean-up reagents and stains. The guide also offers protein sample preparation products. |
- Chen, Xiao-Yue et al (2023) YAP-regulated type II alveolar epithelial cell differentiation mediated by human umbilical cord-derived mesenchymal stem cells in acute respiratory distress syndrome. BIOMED PHARMACOTHER. https://doi.org/10.1016/j.biopha.2023.114302
- Elenbaas, J.S. et al (2023). SVEP1 is an endogenous ligand for the orphan receptor PEAR1. NAT COMMUN. https://doi.org/10.1038/s41467-023-36486-0
- Kwon C-S et al. Anti-Leukemic Effects of Idesia polycarpa Maxim Branch on Human B-Cell Acute Lymphoblastic Leukemia Cells. Current Issues in Molecular Biology. 2023; 45(5):4035-4049. https://doi.org/10.3390/cimb45050257
- Panahi, M., Hase, Y., Gallart-Palau, X. et al. ER stress induced immunopathology involving complement in CADASIL: implications for therapeutics. acta neuropathol commun 11, 76 (2023). https://doi.org/10.1186/s40478-023-01558-1
- Sato, Tatsuya et al (2023) Optimized protocol for quantification of mitochondrial non-heme and heme iron content in mouse tissues and cultured cells. CELL PRESS. https://doi.org/10.1016/j.xpro.2023.102064
- Song, EA.C. et al (2023) ΔNp63 maintains the fidelity of the myoepithelial cell lineage and directs cell differentiation programs in the murine salivary gland. CELL DEATH DIFFER. https://doi.org/10.1038/s41418-022-01101-0
- Zhou, Angela L. et al (2023) Fragment-based drug discovery of small molecule ligands for the human chemokine CCL28. SLAS DISCOVERY. https://doi.org/10.1016/j.slasd.2023.02.004
- "Thirugnanasambantham, Pankajavalli et al (2022) Serendipitous discovery of a competitive inhibitor of FraB a Salmonella deglycase and drug target. PATHOGENS. https://doi.org/10.3390/ pathogens11101102"
- Corbera, G. et al (2022) Local-scale feebacks influencing cold-water coral growth and subsequent reef formation. SCI REP. https://doi.org/10.1038/s41598-022-24711-7
- Gui, M. et al (2022) Ciliary central apparatus structure reveals mechanisms of microtubule patterning. NAT STRUCT MOL BIOL. https://doi.org/10.1038/s41594-022-00770-2
- Hanna, David A. et al (2022) Heme oxygenase-2 (HO-2) binds and buffers lbile ferric heme in human embryonic kidney cells. J BIO CHEM. https://doi.org/10.1016/j.jbc.2021.101549
- Nguyen, Hai et al (2022) Characterization of a radical SAM oxygenase for the ether crosslinking in darobacting biosynthesis. J AM CHEM SOC. https://doi.org/10.1021/jacs.2c05565
- Paget, Max et al (2022) Stress granules are shock absorbers that prevent ecessive innate immune responses to dsRNA. BIORXIV. https://doi.org/10.1101/2021.04.26.441141;
- Wu, Xuedan et al (2022) ERECTA regulates seed size independently of its intracellular domain via MAPK-DA1-UBP115 signaling. THE PLANT CELL. https://doi.org/10.1093/plcell/koac194
- Dong, Fangyuan et al (2021) An engineered, non-diaztrophic cyanobacterium and its application in bioelectrochemical nitrogen fixation. CELL REP. https://doi.org/10.1016/j.xcrp.2021.100444
- Gui, Miao et al (2021) De novo identification of mmalian ciliary motility proteins using cryo-EM. CELL. https://doi.org/10.1016/j.cell.2021.10.007
- Henna, M. et al (2021) Isobutene production in Synechocystis sp. PCC 6803 by introducing α-ketoisocaproate dioxygenase from Rattus norvegicus. Metab Eng Commun. doi.org/10.1016/j.mec.2021.e00163
- Kim, Hyojung et al (2021) Parkin interacting substrate phosphorylation by c - Abl drives dopaminergic neurodegeneration. BRAIN. https://doi.org/10.1093/brain/awab356
- Kim, In-Hye et al (2021) Dichloromethane fractions of Calystegia soldanella induce S-phase arrest and apoptosis in HT-29 human colorectal cancer cells. MOL MED REP. https://doi.org/10.3892/mmr.2021.12576
- Walton, T., Wu, H. & Brown, A. Structure of a microtubule-bound axonemal dynein. Nat Commun 12, 477 (2021). https://doi.org/10.1038/s41467-020-20735-7
- Walton, T., Wu, H. & Brown, A. Structure of a microtubule-bound axonemal dynein. Nat Commun. (2021). doi.org/10.1038/s41467-020-20735-7
- Aykul, S. et al (2020) Sell Host and Microbe. doi.org/10.1016/j.chom.2020.05.004
- Bera, P. et al (2020) Induced apoptosis against U937 cancer cells by Fe(II), Co(III) and Ni(II) complexes with a pyrazine-thiazole ligand: Synthesis, structure and biological evaluation. Polyhedron. 182:114503
- Brachmann, C. et al (2020) Redox requirements for ubiquitin-like urmylation of Ahp1, a 2-Cys peroxiredoxin from yeast. Redox Biology. 30:101438
- Clearly, M. P. et al (2020) ] Leptin Signaling in Liver Tissue of a Transgenic Breast Cancer Mouse Model. Cureus. doi:10.7759/cureus.6737
- Durall, C. et al (2020) Increased ethylene production by overexpressing phosphoenolpyruvate carboxylase in the cyanobacterium Synechocystis PCC 6803. Biotechnol Biofuels. doi.org/10.1186/s13068-020-1653-y
- Durall, C. et al (2020) Oligomerization and characteristics of phosphoenolpyruvate carboxylase in Synechococcus PCC 7002. Sci Rep. doi.org/10.1038/s41598-020-60249-2
- Glanzner, W. G. et al (2020) Histone Lysine Demethylases KDM5B and KDM5C Modulate Genome Activation and Stability in Porcine Embryos. Front. Cell Dev. Biol.doi.org/10.3389/fcell.2020.00151
- Miki, Y. et al, (2020) Reproduction, Fertility and Development. doi.org/10.1071/RD19445
- Moschetti, A. et al (2020) Assembly and Characterization of Biocompatible Coenzyme Q10‐Enriched Lipid Nanoparticles. Lipids. doi.org/10.1002/lipd.12218
- Shim, H. et al (2020) NF-κB p65 represses microRNA-124 transcription in diffuse large B-cell lymphoma. Genes Genom. 42:543–551
- Tuna, B. G. et al (2020) Leptin Signaling in Liver Tissue of a Transgenic Breast Cancer Mouse Model. Cureus. DOI: 10.7759/cureus.6737
- Zhang, B. et al (2020) Trehalose and alginate oligosaccharides increase the stability of muscle proteins in frozen shrimp (Litopenaeus vannamei). Food Funct. doi.org/10.1039/C9FO02596K.
- Hertz, MI et al (2019) Brugia malayi galectin 2 is a tandem-repeat type galectin capable of binding mammalian polysaccharides. MOL BIOCHEM PARASIT. https://doi.org/10.1016/j.molbiopara.2019.111233
- Weiterer, SS. et al (2019) Distinct IL‐1α‐responsive enhancers promote acute and coordinated changes in chromatin topology in a hierarchical manner. EMBO J. https://doi.org/10.15252/embj.2019101533
- Adams, J. et al (2019) [HTML] Autophagy–lysosome pathway alterations and alpha-synuclein up-regulation in the subtype of neuronal ceroid lipofuscinosis, CLN5 disease.Sci Rep.9:151.
- Alaswad, A. A. (2019) Classical Soybean (Glycine max (L.) Merr) Symbionts, Sinorhizobium fredii USDA191 and Bradyrhizobium diazoefficiens USDA110, Reveal Contrasting Symbiotic Phenotype on Pigeon Pea (Cajanus cajan (L.) Millsp).Int. J. Mol. Sci.doi.org/10.3390/ijms20051091
- Avtanski, D. et al (2019) In vitro effects of resistin on epithelial to mesenchymal transition (EMT) in MCF-7 and MDA-MB-231 breast cancer cells – qRT-PCR and Westen blot analyses data. Data in Brief. 25:104118
- Avtanski, D. et al (2019) Resistin induces breast cancer cells epithelial to mesenchymal transition (EMT) and stemness through both adenylyl cyclase-associated protein 1 (CAP1)-dependent and CAP1-independent mechanisms. CYTOKINE. 120:155-164
- Bukato, O. et al (2019) Proteomic dataset: Profiling of cultivated Echerichia coli isolates from Crohn's disease Q 9 patients and healthy individuals. Data in Brief. https://doi.org/10.1016/j.dib.2019.103734
- Caslin, H. L. et al (2019) Lactic Acid Inhibits Lipopolysaccharide-Induced Mast Cell Function by Limiting Glycolysis and ATP Availability. J Immunol.DOI: https://doi.org/10.4049/jimmunol.1801005
- Caslin, H. L. et al (2019) Lactic Acid Inhibits Lipopolysaccharide-Induced Mast Cell Function by Limiting Glycolysis and ATP Availability.J Immunol. doi.org/10.4049/jimmunol.1801005.
- Contadini, C. et al (2019) p53 mitotic centrosome localization preserves centrosome integrity and works as sensor for the mitotic surveillance pathway. CELL DEATH DIS. https://doi.org/10.1038/s41419-019-2076-1
- Han, F. et al (2019) GLTSCR1 Negatively Regulates BRD4‐Dependent Transcription Elongation and Inhibits CRC Metastasis. ADV SCI. :1901114
- Hertz, MI. et al (2019) Brugia malayi galectin 2 is a tandem-repeat type galectin capable of binding mammalian polysaccharides. https://doi.org/10.1016/j.molbiopara.2019.111233
- Hua, R. et al (2019) FBXO47 regulates telomere-inner nuclear envelope integration by stabilizing TRF2 during meiosis. NUCLEIC ACIDS RE. https://doi.org/10.1093/nar/gkz992
- Kim, DU. et al (2019) Inhibition of phosphodiesterase 4D decreases the malignant properties of DLD‑1 colorectal cancer cells by repressing the AKT/mTOR/Myc signaling pathway. ONCOL LETT
- Li, SC. et al (2019) Lactobacillus acidophilus-Fermented Germinated Brown Rice Suppresses Preneoplastic Lesions of the Colon in Rats. NUTRIENTS. doi:10.3390/nu11112718
- Lober, M.A. et al (2019) Aromatic Residues at the Dimer−Dimer Interface in the Peroxiredoxin Tsa1 Facilitate Decamer Formation and Biological Function.10.1021/acs.chemrestox.8b00346..
- MacVicar, T. et al (2019) Lipid signalling drives proteolytic rewiring of mitochondria by YME1L. https://doi.org/10.1038/s41586-019-1738-6
- Monteonofrio, L. et al (2019) CELL. doi:10.3390/cells8111391
- Nicklow, EE. Activity of the yeast cytoplasmic Hsp70 nucleotide exchange factor Fes1 is regulated by reversible methionine oxidation. J BIOL CHEM. doi: 10.1074/jbc.RA119.010125
- Nicklow, EE. et al (2019) Activity of the yeast cytoplasmic Hsp70 nucleotide exchange factor Fes1 is regulated by reversible methionine oxidation. J BIOL CHEM
- Pearson, M. et al (2019) Mucosal Immune Response to Feline Enteric Coronavirus Infection. Viruses 11:906 doi:10.3390/v11100906
- Rivera, ME. et al (2019) Leucine increases mitochondrial metabolism and lipid content without altering insulin signaling in myotubes. BIOCHIMIE
- Talarek-Karwel, M (2019) 24-Epibrassinolide modulates primary metabolites, antioxidants, and phytochelatins in Acutodesmus obliquus exposed to lead stress. J APPL PHYCOL. https://doi.org/10.1007/s10811-019-01966-8
- Tompkins, SC. Disrupting Mitochondrial Pyruvate Uptake Directs Glutamine into the TCA Cycle away from Glutathione Synthesis and Impairs Hepatocellular Tumorigenesis. CELL REP. 28:2608-2619
- Zouhar, P. et al (2019) UCP1-independent glucose lowering effect of leptin in type 1 diabetes: only in conditions of hypoleptinemia. AM J PHYSIOL-ENDOC M. NOV 2019https://doi.org/10.1152/ajpendo.00253.2019
- Banerjee, A. et al (2018) W1038 near D-loop of NBD2 is a focal point for inter-domain communication in multidrug transporter Cdr1 of Candida albicans.Biochim. Biophys. Acta.DOI.org/10.1016/j.bbamem.2018.01.022
- Bumgardner, S. A. et al (2018) Nod2 is required for antigen-specific humoral responses against antigens orally delivered using a recombinant Lactobacillus vaccine platform.PLoS ONE.doi.org/10.1371/journal.pone.0196950.
- Goretsky, T. et al (2018) Beta-catenin cleavage enhances transcriptional activation.Sci Rep.doi:10.1038/s41598-017-18421-8
- K. T. Sawicki, et al (2018) Hepatic tristetraprolin promotes insulin resistance through RNA destabilization of FGF21.JCI Insight.DOI:10.1172/jci.insight.95948
- Kim, E. et al (2018) Angelica gigas Nakai and Decursin Downregulate Myc Expression to Promote Cell Death in B-cell Lymphoma.Sci Rep.8:10590.
- Li, S. et al (2018) Effects of proteome changes on the tenderness of yak rumen smooth muscle during postmortem storage based on the label-free mass spectrometry. Food Res. Int. doi: 10.1016/j.foodres.2018.10.023
- Abebayehu D. et al (2017) Galectin-1 Promotes an M2 Macrophage Response to Polydioxanone Scaffolds. J Biomed Mater Res A. DOI: 10.1002/jbm.a.36113
- Bradford, E.M. et al (2017) Myo-inositol reduces β-catenin activation in colitis. World J Gastroenterol. doi: 10.3748/wjg.v23.i28.5115.
- Elvington, M. et al (2017) A C3(H20) recycling pathway is a component of the intracellular complement system. J Clin Invest.doi:10.1172/JCI89412.
- Fletcher, N. et al (2017) Oxidative stress: a key regulator of leiomyoma cell survival. Fertility and Sterility. DOI: http://dx.doi.org/10.1016/j.fertnstert.2017.04.015
- Haley, E. et al (2017) Acidic pH with coordinated reduction of basic fibroblast growth factor maintains the glioblastoma stem cell-like phenotype in vitro. J Biosci Bioeng. http://dx.doi.org/10.1016/j.jbiosc.2016.12.006.
- Haugen, L. H. et al (2017)Endosomal binding kinetics of Eps15 and Hrs specifically regulate the degradation of RTKs. Sci Rep.DOI:10.1038/s41598-017-17320-2.
- Ines, M. et al (2017) Physiological impacts of acute Cu exposure on deep-sea vent mussel Bathymodiolus azoricus under a deep-sea mining activity scenario.j.aquatox. 193:40.
- Kim, J.J. et al ((2017) Optical High Content Nanoscopy of Epigenetic Marks Decodes Phenotypic Divergence in Stem Cells. Sci Rep. doi: 10.1038/srep39406
- Mishra, S. et al (2017) Evaluation of Beauveria bassiana infection in the hemolymph serum proteins of the housefly, Musca domestica L. (Diptera: Muscidae) Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-017-0193-x
- Shaefer-Ramadan, S. et al (2017) Transition metal dependent regulation of the signal transduction cascade driving oocyte meiosis. J Cell Physiol.DOI: 10.1002/jcp.26157
- Yu, Q. et al ( 2017) Unraveling proteome changes of Holstein beef M. semitendinosus and its relationship to meat discoloration during post-mortem storage analyzed by label-free mass spectrometry. J Proteomics.154:85
- Yu, Q. et al (2017) Comparative proteomics to reveal muscle-specific beef color stability of Holstein cattle during post-mortem storage. Foodchem. 229:769
- Yu, Q. et al (2017) Unraveling proteome changes of Holstein beef M. semitendinosus and its relationship to meat discoloration during post-mortem storage analyzed by label-free mass spectrometry. J Proteomics. 154:85
- Zhang, Y. and Igve, O.J. (2017) Exogenous oxidants activate nuclear factor kappa B through Toll-like receptor 4 stimulation to maintain inflammatory phenotype in macrophage. Biochem. Pharmacol.DOI.org/10.1016/j.bcp.2017.11.012
- Abebayehu, D. et al (2016) Lactic Acid Suppresses IL-33–Mediated Mast Cell Inflammatory Responses via Hypoxia-Inducible Factor-1α–Dependent miR-155 Suppression. J Immunol doi: 10.4049/jimmunol.1600651
- Chalat, M. et al (2016) C-terminus of the P4-ATPase ATP8A2 Functions in Protein Folding and Regulation of Phospholipid Flippase Activity. Mol Biol Cell. doi: 10.1091/mbc.E16-06-0453
- Dong D. et al (2016) Human Serum Albumin and HER2-Binding Affibody Fusion Proteins for Targeted Delivery of Fatty Acid-Modified Molecules and Therapy. Mol Pharm DOI: 10.1021/acs.molpharmaceut.6b00265
- Fletcher, N.M. Et al (2016) Specific point mutations in key redox enzymes are associated with chemoresistance in epithelial ovarian cancer. doi./10.1016/j.freeradbiomed.2016.11.028
- Goretsky, T. et al (2016) A Cytosolic Multiprotein Complex Containing p85α Is Required for β-Catenin Activation in Colitis and Colitis-associated Cancer. J Biol Chem.291:4166
- Liu, Y. et al (2016) Neuronal GPCR OCTR-1 regulates innate immunity by controlling protein synthesis in Caenorhabditis elegans. Sci. Rep. doi:10.1038/srep36832
- Martins, I. et al (2016) Activity of antioxidant enzymes in response to atmospheric pressure induced physiological stress in deep-sea hydrothermal vent mussel Bathymodiolus azoricus. Mar Environ Res. 114:65
- Mobley C.B. et all (2016) Whey protein-derived exosomes increase protein synthesis and hypertrophy in C2C12 myotubes. Journal of Dairy Science. Doi 10.3168/jds.2016-11341
- Moua, P.S. et al (2016) Differential Secretion Pathways of Proteins Fused to the E. coli Maltose Binding Protein (MBP) in Pichia pastoris. Protein Expr. Purif.124:1.
- Sharp, M.H. et al (2016) The Effects of Fortetropin Supplementation on Body Composition, Strength, and Power in Humans and Mechanism of Action in a Rodent Model. J. Am. Coll. Nutr. doi/10.1080/07315724.2016.1142403
- Suman, S.S et al (2016) Up-regulation of cytosolic tryparedoxin in Amp B resistant isolates of Leishmania donovani and its interaction with cytosolic tryparedoxin peroxidase. Biochimie. 121:312
- Wither, M.J. et al (2016) Mass Spectrometry-Based Bottom-Up Proteomics: Sample Preparation, LC-MS/MS Analysis, and Database Query Strategies. Curr. Protoc. Protein Sci. doi: 10.1002/cpps.18
- Aykul,S.et PLoS ONE(2015) 10(1): e0114954.
- Buchholz M. et al.(2015)PloS one. doi:10.1371/journal.pone.0122946
- Cawley, X.N. et al (2015)Carboxypeptidase E and Secretogranin III coordinately facilitate efficient sorting of proopiomelanocortin to the regulated secretory pathway in AtT20 cells. Mol. Endocrinol.doi: 10.1210/me.2015-1166
- Hill, R. C. et al (2015) MCP. DOI: 10.1074/mcp.M114.045260
- Kuo, C. et al. (2015) Sci Rep. doi:10.1038/srep11187
- Matta. S.K. et al (2015) Int J Biochem Cell Biol. doi:10.1016/j.biocel.2015.07.010
- Mishra, S. et al (2015) Environ Sci Pollut Res Int. DOI: 10.1007/s11356-015-5105-3
- Prajapati, V. et al (2015) Nutr Cancer DOI:10.1080/01635581.2015.1019635
- Siddappa, D. et al (2015) PLOS. 10(3):e0119387
- White, V. J. et al (2015) AIMS Medical Science 2:26
- Attucks, O. C. et al (2014) PLOS. 9(7): e101044
- Bhagwat, N. et al (2014) Blood. 123:2075
- Ikeda, Y. et al (2014) PLOS. 9(2): e88037
- Jones, M. M. et al (2014) Infect Immun. doi: 10.1128/IAI.02185-14
- Mishra, R. C. et al (2014) Plant Physiology 166:1646
- Mulvey, B. et al (2014) BBA. Gene regulatory mechanisms. 1839:773
- Otsuka, T. et al (2014) Infect. Immun. doi: 10.1128/IAI.01832-14
- Surlow, B. A. et al (2014) J Biol Chem. 289:31591
- Bains, O.S. et al (2013) J. Pharmacol. Exp. Ther. 347: 375
- Belotte, J. et al (2013) Reprod. Sci. 21:503
- Bohrer, R.C. et al (2013) Reproduction. 146:325
- Dorai H, et al. (2013) J Proteomics Bioinform 6: 099
- Fedorova, L.V. et al (2013) BMC Nephrology 14:209
- Lee, A.B. et al (2013) Nature. 493:416
- Lim, H et al (2013) JBC. 288:7572
- Lin, H. et al (2013) Cilia. 2:14
- Lin, H. et al (2013) PLOS Genetics. 9(9): e1003841
- McClure, M.J. et al (2013) J. Tissue Eng. Regen. M. DOI: 10.1002/term.1755
- Mishra, M. et al (2013) Epilepsy Res. 106:83
- Murphy, T.F. et al (2013) Infect. Immun. 81:3406
- Paul, S. and Kundu, R. (2013) DARU J. Pharma Sci. 21:72
- Qiao, A. et al (2013) JAHA. 2:e000121
- Reschke, M. et al (2013) Cell Reports 4:1276
- Sun, X. et al (2013) J. Neurosci. Res. 91:799
- Azoitei, N. et al (2012) J Exp Med 10:1084
- Caldwell, G.B. et al (2012) J. Cell. Biochem. 113:39
- Donovan, A.J. et al (2012) Mol. Pharmacol. 82:428
- Johansson, A. et al (2012) Mol. Cancer Res. 10:1158
- Kamthan, M. et al(2012) Fungal Genet. Biol. 49:369
- Ketkar, A.A. and Reddy, K.V.R (2012) J. Cell. Sci. Ther. 3:120
- Ketkar, A.A. and Reddy, K.V.R (2012) J. Cell. Sci. Ther. 3:131
- Landsverk, O.J.B. et al (2012) J Leukoc Biol 91:729
- Liu, J. et al (2012) Exp. Hematol. 40:487
- Ma, L. et al (2012) PNAS 10:1073
- McNulty, S.N. et al (2012) PLOS. 7(9): e45777
- Pullen, N.A. et al (2012) JBC. 287:2045
- Rice, K.P. et al (2012) Mol. Cell. Biochem. 370:199
- Rines, A et al (2012) FASEB J. 26:4685
- Staley, C.A. et al (2012) Gene. 496:118
- Walliwalagedara, C. et al (2012) Amer. J. Plant Sci. 3:764
- White, R.E. et al (2012) ASN Neuro. 4(5):art:e00096.doi:10.1042/AN20110020
- Brittain, J.M. et al (2011) J Biol Chem 286:37778
- Cawley, N. et al (2011) J Endocrinol 210:181
- Chin, J.W. and Cirino, P. (2011) Biotech. Process. 27:333
- Dinesh, R. et al (2011) Genes immun. 12:360
- Dogan, S. et al (2011) Nutr. Cancer. 63:389
- Gu, T. et al (2011) PLOS. 6(1): e15640
- Gu, T. et al (2011) PLOS. 6(4): e19169
- Guerriero, J. et al (2011) J Immunol 186:3517
- Jha, D. et al (2011) Bioconjugate Chem. 22:319
- Kellner, S. et al (2011) Nuc Acid Res 39:7348
- Kumar, B. et al (2011) Inter. J. Parasitol. 41:991
- Mutharasan, R.K. et al (2011) Am J Physiol Heart Circ Physiol 301:H1519
- Nageshan, R. et al (2011) J Biol Chem 286:7116
- Rude, M. et al (2011) Appl. Envir. Microbiol. 77:1718
- Cawley, N.X. et al (2010) Am J Physiol Endocrinol Metab. 299:E189
- Escamilla-Hernandez, R. et al (2010) BMC Molecular Biology. 11:68
- Galimberti, F. et al (2010) Clin. Cancer Res. 16:109
- Li, Z. et al (2010) Biochem. Bioph. Res. Co. 402:519
- Li, Z. et al (2010) Protein Expression and Purification. 72:113
- Marubayashi, S. et al (2010) J. Clin. Invest. 120:3578
- Mishra, M. et al (2010) Epilepsy Behav. 19:264
- Niamh, C.X. et al (2010) Am J Physiol Endocrinol Metab 299:E189
- Orkwis, B.R. et al (2010) Genetics 186:885
- Salvay, D.M. et al (2010) Gene Therapy. 17:1134
- Sekar, Y. et al (2010) J Immunol 185:578
- Thompson, Audie K. et al (2010) Mutagenic analysis of Cox11 of Rhodobacter sphaeroides: Insights into the assembly of Cu(B) of cytochrome c oxidase. NIH PUBLIC ACCESS. https://doi.org/10.1021/bi1003876
- Zhai, J. et al (2010) J. Nutr. Biochem. 21:1099
- Chin, J.W. et al (2009) Biotechnol. Bioeng. 102:209
- Choi, Y.S. et al (2009) Develop. Biol. 329:227
- De Jesus, J.B. et al (2009) J. Proteome Res. 8:1555
- Jyoti, A. et al (2009) Epilep. Behav. 14:300
- Jyoti, A. et al (2009) Neurosci Lett. 453:86
- Li, Z. et al (2009) Protein Expression and Purification. 67:175
- Roth, K. et al (2009) Int Immunol. 21:19
- Sethi, P. et al (2009) Pharmacol. Biochem. Behav. 93:31
- Cuervo, P. et al (2008) J. Proteomics. 71:109
- McMahon, H. et al (2008) Endocrinology 149:812
- Ram, E.V.S. et al (2008) Nuc Acid Res 36:5061
- Ray, S. et al (2008) Mol. Endocrinol. 22:
- Chen, J. et al (2007) J. Lipid Res. 48:2365
- Cuervo, P. et al (2007) Mol. Biochem. Parasitol. 154:6
- De Jesus, J.B. et al (2007) J. Mass Spec. 42:1463
- De Jesus, J.B. et al (2007)Proteomics. 7:1961
- Gennidakis, S. et al (2007) Plant J 52:839
- Gennidakis, S. et al (2007) Plant J 52:839
- Gu, T et al (2007) Blood 110:323
- Kitareewan, S. et al (2007) JNCI 99:41
- Wibbenmeyer, J. et al (2007) Cold Spring Harb. Protoc. doi:10.1101/pdb.prodprot26
- Gu, T. et al (2006) Blood. 108:4202
- Ray, S. et al (2006) Mol Endocrinol 20:1825
- Rocnik, J. et al (2006) Blood. 108:1339
- Timney, B. et al (2006) J Cell Biol 175:579
- Xie, H. et al (2006) Antimicrob. Agents Chemother. 50:3070
- Yoshino, O. et al (2006) PNAS 103:10678
- Zanello, S.B. et al (2006) Curr Eye Res. 21:825
- Baber, S. et al (2005) Am J Physiol Heart Circ Physiol 289:H1476
- Benou, C. et al (2005) J Immunol 174:5407
- Gu, T. et al (2004) Blood. 103:4622
- James, C. et al (2004) J Virol 78:3099
- Lindemann, S. et al (2004) PNAS 101:7076
- Yost, C. et al (2004) J Exp Med 200:671
- Grimaldi, M. et al (2003) J Neurosci 23:4737
- Leungwattanakij, S. et al (2003) J Androl. 24:239
- Liao, W. et al (2003) J Biol Chem 278:3713
- Ma, Y. et al (2003) Oncogene. 22:4924
- Moore, R. et al (2003) J Biol Chem 278:304
- Murray-Kolb, L. et al (2003) Am J Clinical Nutrition 77:180
- Liao, D. et al (2002) J Neurosci 22:9015